
1/7

Collecting invariants of data structures

Alessandro Schena

Constructor institute of technology

September 3, 2024

2/7

Article yet to be published

Content

Collect the class invariants of various data structures.

Set aside all problems regarding the consistency of aggregate objects.

Motivation

Have a formal description of data structures.

Improve quality of automatically generated code.

3/7

How did we group the data structures?

Access
Dictionary
Stack
Queue
Deque

Storage
Linked-lists
Hash-tables
Trees

4/7

Example: Stack

deferred class STACK [G]
feature
push (v: G)
deferred
ensure
sequence.first =v
sequence.but_first =(old sequence)

end
pop: G
require
sequence.count > 0

deferred
ensure
Result =(old sequence).first
sequence =(old sequence).but_first

end

sequence: SEQUENCE [G]
invariant
sequence.count ≥ 0

end

5/7

Example: Linked lists
class LINKED_LIST_CELL [G] feature
key: G
next: detachable like Current

invariant
next ̸=Current

end

class DOUBLY_LINKED_LIST_CELL [G] inherit LINKED_LIST_CELL [G] feature
previous: detachable like Current

invariant
previous ̸=Current
(next ̸=Void) ⇒next.previous =Current
(previous ̸=Void) ⇒previous.next =Current

end

class CIRCULAR_LINKED_LIST_CELL [G] inherit DOUBLY_LINKED_LIST_CELL [G] feature
cycle: SEQUENCE [like Current]

invariant
cycle.has (Current)
cycle.first =cycle.last
∀i: 2 | .. | cycle.count ¦ cycle [i − 1].next =cycle [i]

end

6/7

Limitations

For any data structure, a static verifier might prefer a certain, distinct, but equivalent
characterization of the chosen invariants.

All the class invariants must be complemented with specifications for the consistency
of aggregate objects.

7/7

Thank you

	Introduction

