Verifying Multipliers with Symbolic Computer Algebra by Order and Phase Optimization

University of Freiburg Department of Computer Science **Alexander Konrad**, Christoph Scholl Freiburg, 05. September 2024

Verification of Arithmetic Circuits Motivation

- Circuit design containing arithmetic not only by processor vendors, but also by suppliers of special-purpose hardware
- **Fully automatic formal verification** of arithmetic circuits needed
- Methods based on BDDs or SAT usually fail for multipliers
- **Great progress** for gate-level multipliers during last years based on **Symbolic Computer Algebra**

Verification of Arithmetic Circuits Symbolic Computer Algebra (SCA)

- Symbolic Computer Algebra to verify **integer arithmetic**:
	- Exposition can be **simplified** by considering replacements of variables by gate polynomials ("backward rewriting")
	- Based on the fact that the **polynomial** for a pseudo-Boolean function $f: \{0, 1\}^n \rightarrow Z$ is unique (up to reordering of terms)
	- Illustrated by a simple example: ...

Symbolic Computer Algebra – Example of Backward Rewriting

• Full-Adder with specification $2c_0 + s_0 = a_0 + b_0 + c$:

• Start with output word $2c_0 + s_0$

Symbolic Computer Algebra – Example of Backward Rewriting

• Full-Adder with specification $2c_0 + s_0 = a_0 + b_0 + c$:

• Start with output word $2c_0 + s_0$

$$
\Rightarrow 2h_2+2h_3-2h_2h_3+s_0
$$

Symbolic Computer Algebra – Example of Backward Rewriting

• Full-Adder with specification $2c_0 + s_0 = a_0 + b_0 + c$:

• Start with output word $2c_0 + s_0$ $\Rightarrow 2h_2 + 2h_3 - 2h_2h_3 + s_0$

…

Symbolic Computer Algebra – Example of Backward Rewriting

• Full-Adder with specification $2c_0 + s_0 = a_0 + b_0 + c$:

• Start with output word $2c_0 + s_0$ $\Rightarrow 2h_2 + 2h_3 - 2h_2h_3 + s_0$ $\Rightarrow 2h_2 + 2h_3 - 2h_2h_3 + s_0$ $\Rightarrow 2h_2 + 2ch_1 - 2ch_1h_2 + s_0$ \Rightarrow 2h₂ - 2ch₁h₂ + c + h₁ \Rightarrow 2a₀b₀ - 2a₀b₀ch₁ + c + h₁

Symbolic Computer Algebra – Example of Backward Rewriting

• Full-Adder with specification $2c_0 + s_0 = a_0 + b_0 + c$:

• Start with output word $2c_0 + s_0$ $\Rightarrow 2h_2 + 2h_3 - 2h_2h_3 + s_0$ $\Rightarrow 2h_2 + 2h_3 - 2h_2h_3 + s_0$ $\Rightarrow 2h_2 + 2ch_1 - 2ch_1h_2 + s_0$ \Rightarrow 2h₂ - 2ch₁h₂ + c + h₁ $\Rightarrow 2a_0b_0 - 2a_0b_0ch_1 + c + h_1$

Symbolic Computer Algebra – Example of Backward Rewriting

• Full-Adder with specification $2c_0 + s_0 = a_0 + b_0 + c$:

• Start with output word $2c_0 + s_0$ $\Rightarrow 2h_2 + 2h_3 - 2h_2h_3 + s_0$ $\Rightarrow 2h_2 + 2h_3 - 2h_2h_3 + s_0$ $\Rightarrow 2h_2 + 2ch_1 - 2ch_1h_2 + s_0$ \Rightarrow 2h₂ - 2ch₁h₂ + c + h₁ $\Rightarrow 2a_0b_0 - 2a_0b_0ch_1 + c + h_1$ $\Rightarrow 2a_0b_0 - 2a_0^2b_0c - 2a_0b_0^2c$ $+4a_0^2b_0^2c+c+a_0+b_0-2a_0b_0$

Symbolic Computer Algebra – Example of Backward Rewriting

• Full-Adder with specification $2c_0 + s_0 = a_0 + b_0 + c$:

• Start with output word $2c_0 + s_0$ $\Rightarrow 2h_2 + 2h_3 - 2h_2h_3 + s_0$ $\Rightarrow 2h_2 + 2h_3 - 2h_2h_3 + s_0$ $\Rightarrow 2h_2 + 2ch_1 - 2ch_1h_2 + s_0$ \Rightarrow 2h₂ - 2ch₁h₂ + c + h₁ $\Rightarrow 2a_0b_0 - 2a_0b_0ch_1 + c + h_1$ $\Rightarrow a_0 + b_0 + c$

Symbolic Computer Algebra – Example of Backward Rewriting

• Full-Adder with specification $2c_0 + s_0 = a_0 + b_0 + c$:

• **Alternatively: Start with** $2c_0 + s_0 - a_0 - b_0 - c$

$$
\Rightarrow ...
$$

\n
$$
\Rightarrow a_0 + b_0 + c - a_0 - b_0 - c = 0
$$

Verification of Arithmetic Circuits Unsigned Integer Multiplication

- n -bit unsigned multiplier is specified as:
	- Inputs $(a_{n-1}a_{n-2}... a_0)$ and $(b_{n-1}b_{n-2}... b_0)$
	- Output $(p_{2n-1}p_{2n-2} \t ... p_0)$

• Specification polynomial
$$
SP = \left(\sum_{i=0}^{2n-1} p_i 2^i - \left(\sum_{j=0}^{n-1} a_j 2^j\right) \times \left(\sum_{k=0}^{n-1} b_k 2^k\right)\right)
$$
 mod 2^{2n}

• **Multiplier is correct iff backward rewriting reduces to 0.**

Verification of Arithmetic Circuits Unsigned Integer Multiplication

• Three-stage multiplier structure:

Previous SCA-based Approaches Removing Vanishing Monomials

- [Sayed-Ahmed et al., DATE'16] discovered *vanishing monomials* as a major problem in backward rewriting
- further developed into several tools:
	- RevSCA [Mahzoon et al., DAC'19]
	- DyPoSub [Mahzool et al., DATE'20]
	- RevSCA-2.0 [Mahzoon et al., TCAD'22]

Previous SCA-based Approaches

Removing Vanishing Monomials + Dynamic Ordering

- [Sayed-Ahmed et al., DATE'16] discovered *vanishing monomials* as a major problem in backward rewriting
- further developed into several tools:
	- RevSCA [Mahzoon et al., DAC'19]
	- DyPoSub [Mahzool et al., DATE'20]
	- RevSCA-2.0 [Mahzoon et al., TCAD'22]
- DyPoSub **first** to use **dynamic ordering** approach

Previous SCA-based Approaches Simplifying FSA stage

- [Kaufmann et al., FMCAD'19] proposed to **simplify multiplier** structure …
- … by **substituting FSA stage**
	- AMulet [Kaufmann et al., FMCAD'19]
	- AMulet 2 [Kaufmann, Biere, TACAS'19]
	- AMulet 2.2 [Kaufmann, Biere, TAP'22]
- … by using **Dual Variables Encoding**
	- TeluMA [Kaufmann et al., DATE'22]

Our new approach Dynamic Phase and Order Optimization

- Various interesting approaches proposed
- But **rely on detecting certain structures** → **robustness in question**
- We claim:

better (and more robust) results with **two, simple dynamic approaches**:

- **Dynamic Phase Optimization**
- **Dynamic Order Optimization**

Our new approach Dynamic Phase Optimization

- Simplification of Dual Variables Encoding in TeluMA [Kaufmann et al., DATE'22]
- Occuring **literals either all positive or all negative**, no mix-up of phases
- **Dynamic**:
	- Start with positive phases for all variables
	- Phase Optimization in current polynomial while backward rewriting
	- Decision based on simple greedy heuristic: polynomial size
- Idea: make backward rewriting more robust against different traversal orders

Our new approach Dynamic Phase Optimization Example

- Consider the function $f(x_1, x_2, x_3) = x_1 \vee x_2 \vee x_3$
- with polynomial representation $P = x_1 + x_2 + x_3 x_1x_2 x_1x_3 x_2x_3 + x_1x_2x_3$
- Change phase of x_1 by replacing it with $1 \overline{x_1}$ $\rightarrow P' = 1 - \overline{x_1} + \overline{x_1}x_2 + \overline{x_1}x_3 - \overline{x_1}x_2x_3$
- Change phase of x_2 by replacing it with $1 \overline{x_2}$ $\rightarrow P'' = 1 - \overline{x_1} \, \overline{x_2} + \overline{x_1} \, \overline{x_2} x_3$
- Change phase of x_3 by replacing it with $1 \overline{x_3}$ finally leads to $P''' = 1 \overline{x_1} \, \overline{x_2} \, \overline{x_3}$

universität freiburg

Our new approach Dynamic Phase Optimization Experiment

universitätfreiburg

Our new approach Dynamic Order Optimization

- Improvement of Dynamic Ordering from DyPoSub [Mahzool et al., DATE'20]
- Main difference: **hierarchical dynamic approach on two different levels**
	- **1. Higher "component level"**
		- \rightarrow choosing a good candidate component in every step
	- **2. Lower "individual node level"** inside the components
		- \rightarrow avoid peaks inside rewriting of a component
		- → **Phase Optimization comes into play here**

 \rightarrow for speed-up: first try out static orders (BFS-, DFS-based)

Experimental Results Experimental Setup

- Examine 5 different tools:
	- 1. Our tool DynPhaseOrderOpt
	- 2. AMulet 2.2 [Kaufmann, Biere, TAP'22]
	- 3. TeluMA [Kaufmann et al., DATE'22]
	- 4. DyPoSub [Mahzool et al., DATE'20]
	- 5. RevSCA-2.0 [Mahzoon et al., TCAD'22]
- Timeout: 12h
- Available memory: 32GB

Experimental Results Examined benchmark set

- Consists of **64-bit unsigned multipliers** from various sources:
	- All 192 benchmarks from AOKI set [Aoki et al., IEICE Trans. Fundam.'06]
	- All 28 benchmarks from GenMul [Mahzoon et al., 2023]
	- All 90 benchmarks from Multgen [Temel, 2019]
	- → **In total 310 different multipliers**
	- For checking robustness, consider different optimizations:
		- 1. None
		- 2. Optimized by ABC with option "resyn3"
		- 3. Optimized by ABC with option "dc2"

Experimental Results Run times of solved instances

Experimental Results

Memory consumption of solved instances

Experimental Results

Causes for failed instances

Experimental Results

Causes for failed instances

- Provided new simple method: **Dynamic Phase and Order Optimization**
- Solves more clean as well as optimized multiplier benchmarks \rightarrow more robust

• **In the future:** Verification of other multipliers as well as other arithmetic circuits