
Verifying Multipliers with Symbolic

Computer Algebra by Order and Phase 

Optimization

University of Freiburg

Department of Computer Science

Alexander Konrad, Christoph Scholl

Freiburg, 05. September 2024



Verification of Arithmetic Circuits

Motivation

• Circuit design containing arithmetic not only by processor vendors, but also by 
suppliers of special-purpose hardware

• Fully automatic formal verification of arithmetic circuits needed

• Methods based on BDDs or SAT usually fail for multipliers

• Great progress for gate-level multipliers during last years based on Symbolic 
Computer Algebra 
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Verification of Arithmetic Circuits

Symbolic Computer Algebra (SCA)

• Symbolic Computer Algebra to verify integer arithmetic:

• Exposition can be simplified by considering replacements of variables by gate 
polynomials („backward rewriting“)

• Based on the fact that the polynomial for a pseudo-Boolean function 
𝒇: 𝟎, 𝟏 𝒏 → 𝒁 is unique (up to reordering of terms)

• Illustrated by a simple example: …
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Verification of Arithmetic Circuits

Symbolic Computer Algebra – Example of Backward Rewriting

• Full-Adder with specification 𝟐𝒄𝟎 + 𝒔𝟎 = 𝒂𝟎 + 𝒃𝟎 + 𝒄:
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• Start with output word 𝟐𝒄𝟎 + 𝒔𝟎



Verification of Arithmetic Circuits

Symbolic Computer Algebra – Example of Backward Rewriting

• Full-Adder with specification 𝟐𝒄𝟎 + 𝒔𝟎 = 𝒂𝟎 + 𝒃𝟎 + 𝒄:

05. September 2024Alexander Konrad | Verifying Multipliers with Symbolic Computer Algebra | 5

𝑏0 𝑎0 𝑐

ℎ2 ℎ1

ℎ3

𝑐0 𝑠0

• Start with output word 𝟐𝒄𝟎 + 𝒔𝟎

 𝟐𝒉𝟐 + 𝟐𝒉𝟑 − 𝟐𝒉𝟐𝒉𝟑 + 𝒔𝟎

𝒄𝟎 = 𝒉𝟐 ∨ 𝒉𝟑
= 𝒉𝟐 + 𝒉𝟑 − 𝒉𝟐𝒉𝟑



Verification of Arithmetic Circuits

Symbolic Computer Algebra – Example of Backward Rewriting

• Full-Adder with specification 𝟐𝒄𝟎 + 𝒔𝟎 = 𝒂𝟎 + 𝒃𝟎 + 𝒄:

05. September 2024Alexander Konrad | Verifying Multipliers with Symbolic Computer Algebra | 6

𝑏0 𝑎0 𝑐

ℎ2 ℎ1

ℎ3

𝑐0 𝑠0

• Start with output word 𝟐𝒄𝟎 + 𝒔𝟎

 𝟐𝒉𝟐 + 𝟐𝒉𝟑 − 𝟐𝒉𝟐𝒉𝟑 + 𝒔𝟎

 …



Verification of Arithmetic Circuits

Symbolic Computer Algebra – Example of Backward Rewriting

• Full-Adder with specification 𝟐𝒄𝟎 + 𝒔𝟎 = 𝒂𝟎 + 𝒃𝟎 + 𝒄:

05. September 2024Alexander Konrad | Verifying Multipliers with Symbolic Computer Algebra | 7

𝑏0 𝑎0 𝑐

ℎ2 ℎ1

ℎ3

𝑐0 𝑠0

• Start with output word 𝟐𝒄𝟎 + 𝒔𝟎

 𝟐𝒉𝟐 + 𝟐𝒉𝟑 − 𝟐𝒉𝟐𝒉𝟑 + 𝒔𝟎

 𝟐𝒉𝟐 + 𝟐𝒉𝟑 − 𝟐𝒉𝟐𝒉𝟑 + 𝒔𝟎

 𝟐𝒉𝟐 + 𝟐𝒄𝒉𝟏 − 𝟐𝒄𝒉𝟏𝒉𝟐 + 𝒔𝟎

 𝟐𝒉𝟐 − 𝟐𝒄𝒉𝟏𝒉𝟐 + 𝒄 + 𝒉𝟏

 𝟐𝒂𝟎𝒃𝟎 − 𝟐𝒂𝟎𝒃𝟎𝒄𝒉𝟏 + 𝒄 + 𝒉𝟏



Verification of Arithmetic Circuits

Symbolic Computer Algebra – Example of Backward Rewriting

• Full-Adder with specification 𝟐𝒄𝟎 + 𝒔𝟎 = 𝒂𝟎 + 𝒃𝟎 + 𝒄:

05. September 2024Alexander Konrad | Verifying Multipliers with Symbolic Computer Algebra | 8

𝑏0 𝑎0 𝑐

ℎ2 ℎ1

ℎ3

𝑐0 𝑠0

• Start with output word 𝟐𝒄𝟎 + 𝒔𝟎

 𝟐𝒉𝟐 + 𝟐𝒉𝟑 − 𝟐𝒉𝟐𝒉𝟑 + 𝒔𝟎

 𝟐𝒉𝟐 + 𝟐𝒉𝟑 − 𝟐𝒉𝟐𝒉𝟑 + 𝒔𝟎

 𝟐𝒉𝟐 + 𝟐𝒄𝒉𝟏 − 𝟐𝒄𝒉𝟏𝒉𝟐 + 𝒔𝟎

 𝟐𝒉𝟐 − 𝟐𝒄𝒉𝟏𝒉𝟐 + 𝒄 + 𝒉𝟏

 𝟐𝒂𝟎𝒃𝟎 − 𝟐𝒂𝟎𝒃𝟎𝒄𝒉𝟏 + 𝒄 + 𝒉𝟏

𝒉𝟏 = 𝒂𝟎 ⊕𝒃𝟎
= 𝒂𝟎 + 𝒃𝟎 − 𝟐 𝒂𝟎𝒃𝟎



Verification of Arithmetic Circuits

Symbolic Computer Algebra – Example of Backward Rewriting

• Full-Adder with specification 𝟐𝒄𝟎 + 𝒔𝟎 = 𝒂𝟎 + 𝒃𝟎 + 𝒄:

05. September 2024Alexander Konrad | Verifying Multipliers with Symbolic Computer Algebra | 9

𝑏0 𝑎0 𝑐

ℎ2 ℎ1

ℎ3

𝑐0 𝑠0

• Start with output word 𝟐𝒄𝟎 + 𝒔𝟎

 𝟐𝒉𝟐 + 𝟐𝒉𝟑 − 𝟐𝒉𝟐𝒉𝟑 + 𝒔𝟎

 𝟐𝒉𝟐 + 𝟐𝒉𝟑 − 𝟐𝒉𝟐𝒉𝟑 + 𝒔𝟎

 𝟐𝒉𝟐 + 𝟐𝒄𝒉𝟏 − 𝟐𝒄𝒉𝟏𝒉𝟐 + 𝒔𝟎

 𝟐𝒉𝟐 − 𝟐𝒄𝒉𝟏𝒉𝟐 + 𝒄 + 𝒉𝟏

 𝟐𝒂𝟎𝒃𝟎 − 𝟐𝒂𝟎𝒃𝟎𝒄𝒉𝟏 + 𝒄 + 𝒉𝟏

 𝟐𝒂𝟎𝒃𝟎 − 𝟐𝒂𝟎
𝟐𝒃𝟎𝒄 − 𝟐𝒂𝟎𝒃𝟎

𝟐𝒄
+𝟒𝒂𝟎

𝟐𝒃𝟎
𝟐𝒄 + 𝒄 + 𝒂𝟎+𝒃𝟎 − 𝟐𝒂𝟎𝒃𝟎

𝒉𝟏 = 𝒂𝟎 ⊕𝒃𝟎
= 𝒂𝟎 + 𝒃𝟎 − 𝟐 𝒂𝟎𝒃𝟎



Verification of Arithmetic Circuits

Symbolic Computer Algebra – Example of Backward Rewriting

• Full-Adder with specification 𝟐𝒄𝟎 + 𝒔𝟎 = 𝒂𝟎 + 𝒃𝟎 + 𝒄:

05. September 2024Alexander Konrad | Verifying Multipliers with Symbolic Computer Algebra | 10

𝑏0 𝑎0 𝑐

ℎ2 ℎ1

ℎ3

𝑐0 𝑠0

• Start with output word 𝟐𝒄𝟎 + 𝒔𝟎

 𝟐𝒉𝟐 + 𝟐𝒉𝟑 − 𝟐𝒉𝟐𝒉𝟑 + 𝒔𝟎

 𝟐𝒉𝟐 + 𝟐𝒉𝟑 − 𝟐𝒉𝟐𝒉𝟑 + 𝒔𝟎

 𝟐𝒉𝟐 + 𝟐𝒄𝒉𝟏 − 𝟐𝒄𝒉𝟏𝒉𝟐 + 𝒔𝟎

 𝟐𝒉𝟐 − 𝟐𝒄𝒉𝟏𝒉𝟐 + 𝒄 + 𝒉𝟏

 𝟐𝒂𝟎𝒃𝟎 − 𝟐𝒂𝟎𝒃𝟎𝒄𝒉𝟏 + 𝒄 + 𝒉𝟏

 𝒂𝟎 + 𝒃𝟎 + 𝒄

𝒉𝟏 = 𝒂𝟎 ⊕𝒃𝟎
= 𝒂𝟎 + 𝒃𝟎 − 𝟐 𝒂𝟎𝒃𝟎



Verification of Arithmetic Circuits

Symbolic Computer Algebra – Example of Backward Rewriting

• Full-Adder with specification 𝟐𝒄𝟎 + 𝒔𝟎 = 𝒂𝟎 + 𝒃𝟎 + 𝒄:

05. September 2024Alexander Konrad | Verifying Multipliers with Symbolic Computer Algebra | 11

𝑏0 𝑎0 𝑐

ℎ2 ℎ1

ℎ3

𝑐0 𝑠0

• Alternatively: Start with
𝟐𝒄𝟎 + 𝒔𝟎 − 𝒂𝟎− 𝒃𝟎 − 𝒄

 …

…

 …

 …

 𝒂𝟎 + 𝒃𝟎 + 𝒄 − 𝒂𝟎− 𝒃𝟎 − 𝒄 = 𝟎



Verification of Arithmetic Circuits

Unsigned Integer Multiplication

• n -bit unsigned multiplier is specified as:

• Inputs (𝒂𝒏−𝟏𝒂𝒏−𝟐…𝒂𝟎) and (𝒃𝒏−𝟏𝒃𝒏−𝟐…𝒃𝟎)

• Output (𝒑𝟐𝒏−𝟏𝒑𝟐𝒏−𝟐…𝒑𝟎)

• Specification polynomial

• Multiplier is correct iff backward rewriting reduces 𝑺𝑷 to 0.
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𝑺𝑷 = ෍

𝒊=𝟎

𝟐𝒏−𝟏

𝒑𝒊 𝟐
𝒊 − ෍

𝒋=𝟎

𝒏−𝟏

𝒂𝒋 𝟐
𝒋 × ෍

𝒌=𝟎

𝒏−𝟏

𝒃𝒌 𝟐
𝒌 𝐦𝐨𝐝 𝟐𝟐𝒏



Verification of Arithmetic Circuits

Unsigned Integer Multiplication

• Three-stage multiplier structure:
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Simple Partial Product Generator (SP)

Booth Partial Product Generator (BP)

Array (AR)

Wallace Tree (WT)

Dadda Tree (DT)

Compressor Tree (CP)
…

Ripple Carry Adder (RC)

Carry Look-Ahead Adder (CL)

Brent-Kung Adder (BK)

Ladner-Fischer Adder (LF)

…



Previous SCA-based Approaches

Removing Vanishing Monomials
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• [Sayed-Ahmed et al., DATE‘16] discovered
vanishing monomials as a major problem
in backward rewriting

• further developed into several tools:

• RevSCA [Mahzoon et al., DAC‘19]

• DyPoSub [Mahzool et al., DATE‘20]

• RevSCA-2.0 [Mahzoon et al., TCAD‘22]

HA

𝑎 𝑏

𝑥 𝑦

.

.

.

.

.

.

𝑖 𝑗

𝑧

𝑃 = …+ 𝑖 ⋅ 𝑗 + …

𝑃 = …+𝑚 ⋅ 𝑥 ⋅ 𝑦 + …



Previous SCA-based Approaches

Removing Vanishing Monomials + Dynamic Ordering
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• [Sayed-Ahmed et al., DATE‘16] discovered
vanishing monomials as a major problem
in backward rewriting

• further developed into several tools:

• RevSCA [Mahzoon et al., DAC‘19]

• DyPoSub [Mahzool et al., DATE‘20]

• RevSCA-2.0 [Mahzoon et al., TCAD‘22]

• DyPoSub first to use dynamic ordering
approach

𝑪𝟏

𝑪𝟐 𝑪𝟑 𝑪𝟒



Previous SCA-based Approaches

Simplifying FSA stage
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• [Kaufmann et al., FMCAD‘19] proposed to
simplify multiplier structure …

• … by substituting FSA stage

• AMulet [Kaufmann et al., FMCAD‘19]

• AMulet 2 [Kaufmann, Biere, TACAS‘19]

• AMulet 2.2 [Kaufmann, Biere, TAP‘22]

• … by using Dual Variables Encoding

• TeluMA [Kaufmann et al., DATE‘22]

Ripple Carry Adder



Our new approach

Dynamic Phase and Order Optimization

• Various interesting approaches proposed

• But rely on detecting certain structures → robustness in question

• We claim: 

better (and more robust) results with two, simple dynamic approaches:

• Dynamic Phase Optimization

• Dynamic Order Optimization
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Our new approach

Dynamic Phase Optimization

• Simplification of Dual Variables Encoding in TeluMA [Kaufmann et al., DATE‘22]

• Occuring literals either all positive or all negative, no mix-up of phases

• Dynamic: 

• Start with positive phases for all variables

• Phase Optimization in current polynomial while backward rewriting

• Decision based on simple greedy heuristic: polynomial size

• Idea: make backward rewriting more robust against different traversal orders
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Our new approach

Dynamic Phase Optimization Example

• Consider the function 𝑓 𝑥1, 𝑥2, 𝑥3 = 𝑥1 ∨ 𝑥2 ∨ 𝑥3
• with polynomial representation  𝑃 = 𝑥1 + 𝑥2 + 𝑥3 − 𝑥1𝑥2 − 𝑥1𝑥3 − 𝑥2𝑥3 + 𝑥1𝑥2𝑥3

• Change phase of 𝑥1 by replacing it with 1 − 𝑥1
→ 𝑃′ = 1 − 𝑥1 + 𝑥1𝑥2 + 𝑥1𝑥3 − 𝑥1𝑥2𝑥3

• Change phase of 𝑥2 by replacing it with 1 − 𝑥2
→ 𝑃′′ = 1 − 𝑥1 𝑥2 + 𝑥1 𝑥2𝑥3

• Change phase of 𝑥3 by replacing it with 1 − 𝑥3 finally leads to 𝑃′′′ = 1 − 𝑥1 𝑥2 𝑥3
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Our new approach

Dynamic Phase Optimization Experiment
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. . .

. . .

. . . . . .

𝑖0 𝑖1 𝑖30 𝑖31

𝑜 𝑃𝑜𝑢𝑡 = 𝑜

𝑃𝑖𝑛 = 1 − 𝑖0 ⋅ … ⋅ 𝑖31



Our new approach

Dynamic Order Optimization

• Improvement of Dynamic Ordering from DyPoSub [Mahzool et al., DATE‘20]

• Main difference: hierarchical dynamic approach on two different levels

1. Higher “component level” 
→ choosing a good candidate component in every step

2. Lower “individual node level” inside the components
→ avoid peaks inside rewriting of a component

→ Phase Optimization comes into play here

→ for speed-up: first try out static orders (BFS-, DFS-based)
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Experimental Results

Experimental Setup

• Examine 5 different tools:

1. Our tool DynPhaseOrderOpt

2. AMulet 2.2 [Kaufmann, Biere, TAP’22]

3. TeluMA [Kaufmann et al., DATE‘22]

4. DyPoSub [Mahzool et al., DATE‘20]

5. RevSCA-2.0 [Mahzoon et al., TCAD‘22]

• Timeout: 12h

• Available memory: 32GB 
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Experimental Results

Examined benchmark set

• Consists of 64-bit unsigned multipliers from various sources:

• All 192 benchmarks from AOKI set [Aoki et al., IEICE Trans. Fundam.‘06]

• All 28 benchmarks from GenMul [Mahzoon et al., 2023]

• All 90 benchmarks from Multgen [Temel, 2019]

→ In total 310 different multipliers

• For checking robustness, consider different optimizations:

1. None

2. Optimized by ABC with option “resyn3“

3. Optimized by ABC with option “dc2“ 
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Experimental Results

Run times of solved instances
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Experimental Results

Memory consumption of solved instances
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Experimental Results

Causes for failed instances
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Our Tool AMulet 2.2 TeluMA RevSCA-2.0 DyPoSub

Result

Type
no re3 dc2 no re3 dc2 no re3 dc2 no re3 dc2 no re3 dc2

Solved 300 275 226 243 23 7 221 11 2 238 213 169 239 211 151

Timeout 10 34 76 57 282 303 89 219 165 21 20 53 18 23 98

Mem.out 0 1 8 2 5 0 0 1 0 21 70 73 24 69 54

SegFault 0 0 0 (2) (52) (15) 0 77 143 12 0 0 12 0 0

False

Buggy
0 0 0 8 0 0 0 2 0 18 7 15 17 7 7
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Conclusion and Future Work

• Provided new simple method: Dynamic Phase and Order Optimization

• Solves more clean as well as optimized multiplier benchmarks → more robust

• In the future: Verification of other multipliers as well as other arithmetic circuits
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