
Efficient Graph-Based
Reachability Analysis
Refinery:
Refinement-Based Generation and Analysis
of Consistent Models

Attila Ficsor

https://refinery.tools

2

Modeling with Graphs

https://refinery.tools

• Graph based models are widely used in software engineering

• Testing, benchmarking or design space exploration scenarios

Sagiv, M., Reps, T., & Wilhelm, R. (2002). Parametric shape analysis via 3-valued logic.

Data structuresSystem models

Databases Test environments

https://github.com/BerkeleyLearnVerify/Scenic

Generating (consistent | realistic | diverse | scalable) models

3https://refinery.tools

• Logical reasoning and model generation over graphs

• Web-based editor:
• Live editing and feedback

• Support for partial models, graph constraints
and propagation rules

• Efficient storage of model versions

• Incremental query engine

• Calculating difference between model versions

• Framework for further graph processing tasks
• Ideas?

Refinery: Graph Solver as a Service

https://refinery.services/

https://refinery.services/

4

Models and Partial Models

https://refinery.tools

Input

Concrete models
(Labelled graphs)

Output

Abstract models
(Metamodel + Constraints)

Consistent + Diverse +
Scalable: up to tens of thousands of nodes

5https://refinery.tools

https://refinery.services/

https://refinery.services/

6https://refinery.tools

Metamodel:
Captures classes and

relations
(in xcore)

https://refinery.services/

https://refinery.services/

7https://refinery.tools

Initial (seed) model:
needs to be included in
each generated model

8https://refinery.tools

Initial (seed) model:
needs to be included in
each generated model

Explicit support for:
• Negation: excluded elements
• Uncertainty: optional elements
• Assignments for derived predicates

9https://refinery.tools

(Graph) Predicate:
Domain specific language

equivalent to
First Order Relational Logic
• With transitive closure
• Without full recursion

10https://refinery.tools

(Graph) Constraint:
Predicate capturing

violating cases
(no matches are allowed)

11https://refinery.tools

(Graph) Constraint:
Predicate capturing

violating cases
(no matches are allowed)

Continuous consistency checks:
• Type checking
• Containment hierarchy
• Feasibility of derived predicates

13https://refinery.tools

Updating the specification
refines the model

14https://refinery.tools

Updating the specification
refines the model

15https://refinery.tools

Error: highlighting
inconsistency

16https://refinery.tools

Search parameters:
Target number of
• Class instances
• Predicate matches

17https://refinery.tools

consistent | realistic | diverse | scalable

Generation with the
push of a button

18

Applications

https://refinery.tools

Testing vision-based AI components
by generating diverse set of traffic situations

Cost optimization of satellite network
by combining numerical and structural reasoning

Automated test scenario synthesis for verifying collision
avoidance of autonomous vessels

Requirement-Driven Generation of
Distributed Ledger Architectures

Testing vision-based AI components
by generating diverse set of traffic situations

19

Models and Partial Models

https://refinery.tools

Input

Concrete models
(Labelled graphs)

Output

Abstract models
(Metamodel + Constraints)

20

Models and Partial Models

https://refinery.tools

 Concrete models
(Labelled graphs)

Output

Abstract models
(Metamodel + Constraints)

Input

Partial models
explicitly represent uncertainty

Intermediate state

Model generation: exploration process that gradually reduces uncertainty

21https://refinery.tools

Partial modeling with 4-valued logic

• Represent all potential extension with uncertainty

• Logic abstraction: TRUE | False | Unknown | Error
• 4-valued exists: added or removed

• 4-valued equals: merging or splitting

• Refinement: reduces uncertainty → concrete models

git
FileSystem img

File

main
File

child

child

link
File
Symlink

child

target

project
Dir
File

root child

child

src
Dir
File

resources
Dir
File

22https://refinery.tools

Partial modeling with 4-valued logic

git
FileSystem img

File

main
File

child

child

link
File
Symlink

child

target

project
Dir
File

root child

child

src
Dir
File

resources
Dir
File target(link,img):true.

• Represent all potential extension with uncertainty

• Logic abstraction: TRUE | False | Unknown | Error
• 4-valued exists: added or removed

• 4-valued equals: merging or splitting

• Refinement: reduces uncertainty → concrete models

23https://refinery.tools

Partial modeling with 4-valued logic

git
FileSystem img

File

main
File

child

child

link
File
Symlink

child

target

project
Dir
File

root child

child

src
Dir
File

resources
Dir
File

root(git, link):false.

• Represent all potential extension with uncertainty

• Logic abstraction: TRUE | False | Unknown | Error
• 4-valued exists: added or removed

• 4-valued equals: merging or splitting

• Refinement: reduces uncertainty → concrete models

24https://refinery.tools

Partial modeling with 4-valued logic

Uncertain reference
any combination may exist

target(link,img): unknown.
target(link,main):unknown.

git
FileSystem img

File

main
File

child

child

link
File
Symlink

child

target
project

Dir
File

root child

child

src
Dir
File

resources
Dir
File

• Represent all potential extension with uncertainty

• Logic abstraction: TRUE | False | Unknown | Error
• 4-valued exists: added or removed

• 4-valued equals: merging or splitting

• Refinement: reduces uncertainty → concrete models

25https://refinery.tools

Partial modeling with 4-valued logic

git
FileSystem img

File

child

child

link
File
Symlink

child

target

project
Dir
File

root child

child

src
Dir
File

resources
Dir
File

main
Dir
File

Uncertain type
May or may not have the type

Dir(main): unknown.

• Represent all potential extension with uncertainty

• Logic abstraction: TRUE | False | Unknown | Error
• 4-valued exists: added or removed

• 4-valued equals: merging or splitting

• Refinement: reduces uncertainty → concrete models

26https://refinery.tools

Partial modeling with 4-valued logic

• Represent all potential extension with uncertainty

• Logic abstraction: TRUE | False | Unknown | Error
• 4-valued exists: added or removed

• 4-valued equals: merging or splitting

• Refinement: reduces uncertainty → concrete models

git
FileSystem img

File

main
File

child

child

link
File
Symlink

child

target

project
Dir
File

root child

child

src
Dir
File

resources
Dir
File

Invalid value
e.g., forbidden loop

target(link, link):error.

27https://refinery.tools

Partial modeling with 4-valued logic

• Represent all potential extension with uncertainty

• Logic abstraction: TRUE | False | Unknown | Error
• 4-valued exists: added or removed

• 4-valued equals: merging or splitting

• Refinement: reduces uncertainty → concrete models

git
FileSystem img

File

main
File

child

child

link
File
Symlink

child

target

project
Dir
File

root child

child

src
Dir
File

resources
Dir
File

28https://refinery.tools

Partial modeling with 4-valued logic

Uncertain existence
object may be removed

exists(link):unknown.

git
FileSystem img

File

main
File

child

child

link
File
Symlink

child

target

project
Dir
File

root child

child

src
Dir
File

resources
Dir
File

• Represent all potential extension with uncertainty

• Logic abstraction: TRUE | False | Unknown | Error
• 4-valued exists: added or removed

• 4-valued equals: merging or splitting

• Refinement: reduces uncertainty → concrete models

29https://refinery.tools

Partial modeling with 4-valued logic

Uncertain existence
object may be removed

exists(link):unknown.

git
FileSystem img

File

main
File

child

child

project
Dir
File

root child

child

src
Dir
File

resources
Dir
File

child

target

• Represent all potential extension with uncertainty

• Logic abstraction: TRUE | False | Unknown | Error
• 4-valued exists: added or removed

• 4-valued equals: merging or splitting

• Refinement: reduces uncertainty → concrete models

30https://refinery.tools

Partial modeling with 4-valued logic

git
FileSystem img

File

main
File

child

child

link
File
Symlink

child

project
Dir
File

root child

child

src
Dir
File

resources
Dir
File

equals

target

Uncertain equivalence
equals(main,main):
 unknown.

• Represent all potential extension with uncertainty

• Logic abstraction: TRUE | False | Unknown | Error
• 4-valued exists: added or removed

• 4-valued equals: merging or splitting

• Refinement: reduces uncertainty → concrete models

31https://refinery.tools

Partial modeling with 4-valued logic

git
FileSystem img

File

child

child

link
File
Symlink

child

project
Dir
File

root child

child

src
Dir
File

resources
Dir
File

clone 1
File clone 2

File

clone 3
File

child

child

Uncertain equivalence
equals(main,main):
 unknown.

target

• Represent all potential extension with uncertainty

• Logic abstraction: TRUE | False | Unknown | Error
• 4-valued exists: added or removed

• 4-valued equals: merging or splitting

• Refinement: reduces uncertainty → concrete models

32https://refinery.tools

Partial modeling with 4-valued logic

• Represent all potential extension with uncertainty

• Logic abstraction: TRUE | False | Unknown | Error
• 4-valued exists: added or removed

• 4-valued equals: merging or splitting

• Refinement: reduces uncertainty → concrete models

git
FileSystem img

File

main
File

child

child

link
File
Symlink

child

target

project
Dir
File

root child

child

src
Dir
File

resources
Dir
File

33https://refinery.tools

• Model generation is executed with respect to model refinement

E.g.: target(_,_):unknown
+true

target(_,_):true

target(_,_):true
+false

target(_,_):error

Refinement: 4-valued logic

Unknown

TrueFalse

Error

re
fi

n
e

m
e

n
t

Inconsistent

Concrete

Incomplete

Go back

Stop

Go forward

34https://refinery.tools

• Generation → Refinement rules
• Find uncertain value

• Refine with True or False

• Model transformation rules
• Subgraph to match (precondition)

• Modify the model (postcondition)

• Same logic with more complex rules

Model transformation

35https://refinery.tools

• Default algorithm: DFS with random jump backs

• Custom algorithms easily implemented

• Use of objective function

• Guaranteed completeness

State space exploration

36https://refinery.tools

• Model = Labelled Graph

Graph Transformation

value

List

Cell Cell

first

next Cell Cellnextnext

Object Object Object Object

value value value

37https://refinery.tools

• Graph rewriting rule, defined with two graphs

Left Hand Side Right Hand Side

Graph Transformation rule

List

Cell

Cell

first

next

Object

value

RHSLHS

List

Cell

first

38https://refinery.tools

• Graph rewriting rule, defined with two graphs

Left Hand Side Right Hand Side

Graph Transformation rule

LHS

List

Cell

first

39https://refinery.tools

• Matching: find the subgraphs containing LHS in the source
graph

Graph Transformation: Pattern matching

List

Cell

first

next

Object

value

Cell

Cell

Cell

nextnext

Object

Object

Object

value value value

List

Cell

first

LHS

40https://refinery.tools

• Matching: find the subgraphs containing LHS in the source
graph

Graph Transformation: Pattern matching

List

Cell

first

next

Object

value

Cell

Cell

Cell

nextnext

Object

Object

Object

value value value

first

List

Cell

first

LHS

first

41https://refinery.tools

• Matching: find the subgraphs containing LHS in the source
graph

Graph Transformation: Pattern matching

List

Cell

first

next

Object

value

Cell

Cell

Cell

nextnext

Object

Object

Object

value value value

first

List

Cell

first

LHS

first

42https://refinery.tools

• Rewriting the graph by the match:
replace LHS with RHS.

Graph Transformation: Execution of rewriting

List

Cell

first

next

Object

value

Cell

Cell

Cell

nextnext

Object

Object

Object

value value value

List

Cell

Cell

first

next

Object

value

RHS

LHS\RHS → Delete
RHS\LHS → Insert

RHS∩LHS → Leave it

43https://refinery.tools

• We get a new graph

Graph Transformation: Execution of rewriting

List

Cell

next

Object

value

Cell

Cell

Cell

nextnext

Object

Object

Object

value value value

Cell

first

next

Object

value

44https://refinery.tools

• Infinite state space

• Complete state space exploration is impossible

• Abstraction must be used

• Logical reasoning required

Reasoning over abstract models

45https://refinery.tools

Reasoning over abstract models

• Partial model

• Multiple file operations
• Adding, removing and modifying files and directories

• Possibly called asynchronously

• Can we have a File without any reference pointing to it?

git
FileSystem

main
File

child

child

link
File
Symlink

child

equals

target
project

Dir
File

root child

child

src
Dir
File

resources
Dir
File

child

Dir:new
Dir
File

equals

img
File

child

46https://refinery.tools

Reasoning over abstract models

• Partial model

• Multiple file operations
• Adding, removing and modifying files and directories

• Possibly called asynchronously

• Can we have a File without any reference pointing to it?

git
FileSystem

main
File

child

link
File
Symlink

child

equals

target
project

Dir
File

root child

child

src
Dir
File

resources
Dir
File

child

Dir:new
Dir
File

equals

img
File

Object
wihtout

reference

child

47https://refinery.tools

Reasoning over abstract models

Concretization

Abstract model 1

Fully specified
model 1

Abstract model 2

Fully specified
model 2

Transformation

Abstraction

Reasoning

48https://refinery.tools

Reasoning over abstract models

Concretization

Abstract model 1

Fully specified
model 1

Abstract model 2

Fully specified
model 2

Transformation

Transformation

Abstraction

Reasoning

Reasoning

Refinery

49

Summary of Refinery

https://refinery.tools

• Logical reasoning and model generation over graphs

• Web-based editor:
• Live editing and feedback

• Support for partial models and graph constraints

• Containerized execution:
• Continuously deployed at https://refinery.services/

• Available as Docker image: https://refinery.tools/learn/docker/

• Framework for graph processing tasks

https://refinery.services/

	Slide 1: Efficient Graph-Based Reachability Analysis
	Slide 2: Modeling with Graphs
	Slide 3: Refinery: Graph Solver as a Service
	Slide 4: Models and Partial Models
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18: Applications
	Slide 19: Models and Partial Models
	Slide 20: Models and Partial Models
	Slide 21: Partial modeling with 4-valued logic
	Slide 22: Partial modeling with 4-valued logic
	Slide 23: Partial modeling with 4-valued logic
	Slide 24: Partial modeling with 4-valued logic
	Slide 25: Partial modeling with 4-valued logic
	Slide 26: Partial modeling with 4-valued logic
	Slide 27: Partial modeling with 4-valued logic
	Slide 28: Partial modeling with 4-valued logic
	Slide 29: Partial modeling with 4-valued logic
	Slide 30: Partial modeling with 4-valued logic
	Slide 31: Partial modeling with 4-valued logic
	Slide 32: Partial modeling with 4-valued logic
	Slide 33: Refinement: 4-valued logic
	Slide 34: Model transformation
	Slide 35: State space exploration
	Slide 36: Graph Transformation
	Slide 37: Graph Transformation rule
	Slide 38: Graph Transformation rule
	Slide 39: Graph Transformation: Pattern matching
	Slide 40: Graph Transformation: Pattern matching
	Slide 41: Graph Transformation: Pattern matching
	Slide 42: Graph Transformation: Execution of rewriting
	Slide 43: Graph Transformation: Execution of rewriting
	Slide 44: Reasoning over abstract models
	Slide 45: Reasoning over abstract models
	Slide 46: Reasoning over abstract models
	Slide 47: Reasoning over abstract models
	Slide 48: Reasoning over abstract models
	Slide 49: Summary of Refinery

