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Modeling with Graphs

https://refinery.tools

• Graph based models are widely used in software engineering

• Testing, benchmarking or design space exploration scenarios

Sagiv, M., Reps, T., & Wilhelm, R. (2002). Parametric shape analysis via 3-valued logic.

Data structuresSystem models

Databases Test environments 

https://github.com/BerkeleyLearnVerify/Scenic

Generating (consistent | realistic | diverse | scalable) models
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• Logical reasoning and model generation over graphs

• Web-based editor:
• Live editing and feedback

• Support for partial models, graph constraints
and propagation rules

• Efficient storage of model versions

• Incremental query engine

• Calculating difference between model versions

• Framework for further graph processing tasks
• Ideas?

Refinery: Graph Solver as a Service

https://refinery.services/

https://refinery.services/
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Models and Partial Models

https://refinery.tools

Input

Concrete models
(Labelled graphs) 

Output

Abstract models
(Metamodel + Constraints)

Consistent + Diverse +
Scalable: up to tens of thousands of nodes
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https://refinery.services/

https://refinery.services/


6https://refinery.tools

Metamodel:
Captures classes and 

relations
(in xcore)

https://refinery.services/

https://refinery.services/
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Initial (seed) model:
needs to be included in 
each generated model



8https://refinery.tools

Initial (seed) model:
needs to be included in 
each generated model

Explicit support for:
• Negation: excluded elements
• Uncertainty: optional elements
• Assignments for derived predicates
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(Graph) Predicate:
Domain specific language 

equivalent to 
First Order Relational Logic 
• With transitive closure 
• Without full recursion
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(Graph) Constraint:
Predicate capturing 

violating cases 
(no matches are allowed)
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(Graph) Constraint:
Predicate capturing 

violating cases 
(no matches are allowed)

Continuous consistency checks:
• Type checking
• Containment hierarchy
• Feasibility of derived predicates
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Updating the specification
refines the model
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Updating the specification
refines the model
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Error: highlighting 
inconsistency
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Search parameters:
Target number of
• Class instances
• Predicate matches
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consistent | realistic | diverse | scalable

Generation with the 
push of a button
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Applications

https://refinery.tools

Testing vision-based AI components
by generating diverse set of traffic situations

Cost optimization of satellite network
by combining numerical and structural reasoning

Automated test scenario synthesis for verifying collision 
avoidance of autonomous vessels

Requirement-Driven Generation of 
Distributed Ledger Architectures

Testing vision-based AI components
by generating diverse set of traffic situations
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Models and Partial Models

https://refinery.tools

Input

Concrete models
(Labelled graphs) 

Output

Abstract models
(Metamodel + Constraints)
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Models and Partial Models

https://refinery.tools

         

    

   

        

    

   

         

    

               

          

   

    

       

       

       

       

    

    

    

       

       

       

    

    

    

       

       

    

    

   

       

      

    

    

   

    

      

    

          

          

        

    

       

        

    

       

       

       

    

    

   

       

       

       

       

       

        

    

       

       

       

    

    

       

       
    

    

   

      

       

      

       

       

    

    

   

                   

        

    

       

      

      

      

      

      

       

      

      

      

       

      
                  

      

      

      

      

    

    

   

      

       

       

       

    

    

   

          

          

       

       

       

       

               

          

         

    

    

        

    

   

    

            

    

       

    

       

       

       

      

      

      

       

    

       

        

      

         

    

   

   

    

       

       

    

    

       

       

    

    

       

    

    

   

       

        

    

       

      

    

    

   

    

    

    

   

      

      

          

          

        

    

       

    

        

    

              

    

    

   

       

    

    

       

       

        

    

       

       

    

    

       

       

    

    

       

    

    

   

       

    

    

    

    

       

    

    

   

       

    

    

   

       

        

    

       

     

    

   

       

    

    

             

      

    

    

      

      

        

    

       

    

    

   

       

    

    

   

    

    

       

       

       

       

      

       

       

       

          

          Concrete models
(Labelled graphs) 

Output

Abstract models
(Metamodel + Constraints)

Input

Partial models
explicitly represent uncertainty

Intermediate state

Model generation: exploration process that gradually reduces uncertainty
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Partial modeling with 4-valued logic

• Represent all potential extension with uncertainty

• Logic abstraction: TRUE | False | Unknown | Error
• 4-valued exists: added or removed

• 4-valued equals: merging or splitting

• Refinement: reduces uncertainty → concrete models

git
FileSystem img

File

main
File

child

child

link
File
Symlink

child

target

project
Dir
File

root child

child

src
Dir
File

resources
Dir
File
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Partial modeling with 4-valued logic

git
FileSystem img

File

main
File

child

child

link
File
Symlink

child

target

project
Dir
File

root child

child

src
Dir
File

resources
Dir
File target(link,img):true.

• Represent all potential extension with uncertainty

• Logic abstraction: TRUE | False | Unknown | Error
• 4-valued exists: added or removed

• 4-valued equals: merging or splitting

• Refinement: reduces uncertainty → concrete models
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Partial modeling with 4-valued logic

git
FileSystem img

File

main
File

child

child

link
File
Symlink

child

target

project
Dir
File

root child

child

src
Dir
File

resources
Dir
File

root(git, link):false.

• Represent all potential extension with uncertainty

• Logic abstraction: TRUE | False | Unknown | Error
• 4-valued exists: added or removed

• 4-valued equals: merging or splitting

• Refinement: reduces uncertainty → concrete models



24https://refinery.tools

Partial modeling with 4-valued logic

Uncertain reference
any combination may exist

target(link,img): unknown.
target(link,main):unknown.

git
FileSystem img

File

main
File

child

child

link
File
Symlink

child

target
project

Dir
File

root child

child

src
Dir
File

resources
Dir
File

• Represent all potential extension with uncertainty

• Logic abstraction: TRUE | False | Unknown | Error
• 4-valued exists: added or removed

• 4-valued equals: merging or splitting

• Refinement: reduces uncertainty → concrete models
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Partial modeling with 4-valued logic

git
FileSystem img

File

child

child

link
File
Symlink

child

target

project
Dir
File

root child

child

src
Dir
File

resources
Dir
File

main
Dir
File

Uncertain type
May or may not have the type

Dir(main): unknown.

• Represent all potential extension with uncertainty

• Logic abstraction: TRUE | False | Unknown | Error
• 4-valued exists: added or removed

• 4-valued equals: merging or splitting

• Refinement: reduces uncertainty → concrete models
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Partial modeling with 4-valued logic

• Represent all potential extension with uncertainty

• Logic abstraction: TRUE | False | Unknown | Error
• 4-valued exists: added or removed

• 4-valued equals: merging or splitting

• Refinement: reduces uncertainty → concrete models

git
FileSystem img

File

main
File

child

child

link
File
Symlink

child

target

project
Dir
File

root child

child

src
Dir
File

resources
Dir
File

Invalid value
e.g., forbidden loop

target(link, link):error.
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Partial modeling with 4-valued logic

• Represent all potential extension with uncertainty

• Logic abstraction: TRUE | False | Unknown | Error
• 4-valued exists: added or removed

• 4-valued equals: merging or splitting

• Refinement: reduces uncertainty → concrete models

git
FileSystem img

File

main
File

child

child

link
File
Symlink

child

target

project
Dir
File

root child

child

src
Dir
File

resources
Dir
File
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Partial modeling with 4-valued logic

Uncertain existence
object may be removed

exists(link):unknown.

git
FileSystem img

File

main
File

child

child

link
File
Symlink

child

target

project
Dir
File

root child

child

src
Dir
File

resources
Dir
File

• Represent all potential extension with uncertainty

• Logic abstraction: TRUE | False | Unknown | Error
• 4-valued exists: added or removed

• 4-valued equals: merging or splitting

• Refinement: reduces uncertainty → concrete models
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Partial modeling with 4-valued logic

Uncertain existence
object may be removed

exists(link):unknown.

git
FileSystem img

File

main
File

child

child

project
Dir
File

root child

child

src
Dir
File

resources
Dir
File

child

target

• Represent all potential extension with uncertainty

• Logic abstraction: TRUE | False | Unknown | Error
• 4-valued exists: added or removed

• 4-valued equals: merging or splitting

• Refinement: reduces uncertainty → concrete models
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Partial modeling with 4-valued logic

git
FileSystem img

File

main
File

child

child

link
File
Symlink

child

project
Dir
File

root child

child

src
Dir
File

resources
Dir
File

equals

target

Uncertain equivalence
equals(main,main):
        unknown.

• Represent all potential extension with uncertainty

• Logic abstraction: TRUE | False | Unknown | Error
• 4-valued exists: added or removed

• 4-valued equals: merging or splitting

• Refinement: reduces uncertainty → concrete models
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Partial modeling with 4-valued logic

git
FileSystem img

File

child

child

link
File
Symlink

child

project
Dir
File

root child

child

src
Dir
File

resources
Dir
File

clone 1
File clone 2

File

clone 3
File

child

child

Uncertain equivalence
equals(main,main):
        unknown.

target

• Represent all potential extension with uncertainty

• Logic abstraction: TRUE | False | Unknown | Error
• 4-valued exists: added or removed

• 4-valued equals: merging or splitting

• Refinement: reduces uncertainty → concrete models
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Partial modeling with 4-valued logic

• Represent all potential extension with uncertainty

• Logic abstraction: TRUE | False | Unknown | Error
• 4-valued exists: added or removed

• 4-valued equals: merging or splitting

• Refinement: reduces uncertainty → concrete models

git
FileSystem img

File

main
File

child

child

link
File
Symlink

child

target

project
Dir
File

root child

child

src
Dir
File

resources
Dir
File
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• Model generation is executed with respect to model refinement

E.g.: target(_,_):unknown
+true

target(_,_):true

target(_,_):true
+false

target(_,_):error

Refinement: 4-valued logic

Unknown

TrueFalse

Error

re
fi

n
e

m
e

n
t

Inconsistent

Concrete

Incomplete

Go back

Stop

Go forward
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• Generation → Refinement rules
• Find uncertain value

• Refine with True or False

• Model transformation rules
• Subgraph to match (precondition)

• Modify the model (postcondition)

• Same logic with more complex rules

Model transformation
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• Default algorithm: DFS with random jump backs

• Custom algorithms easily implemented

• Use of objective function

• Guaranteed completeness

State space exploration
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• Model = Labelled Graph

Graph Transformation

value

List

Cell Cell

first

next Cell Cellnextnext

Object Object Object Object

value value value
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• Graph rewriting rule, defined with two graphs

Left Hand Side Right Hand Side

Graph Transformation rule

List
 

Cell
 

Cell
 

first

next

Object
 

value

RHSLHS

List
 

Cell
 

first



38https://refinery.tools

• Graph rewriting rule, defined with two graphs

Left Hand Side Right Hand Side

Graph Transformation rule

LHS

List
 

Cell
 

first
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• Matching: find the subgraphs containing LHS in the source 
graph

Graph Transformation: Pattern matching

List
 

Cell
 

first

next

Object
 

value

Cell
 

Cell
 

Cell
 

nextnext

Object
 

Object
 

Object
 

value value value

List
 

Cell
 

first

LHS
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• Matching: find the subgraphs containing LHS in the source 
graph

Graph Transformation: Pattern matching

List
 

Cell
 

first

next

Object
 

value

Cell
 

Cell
 

Cell
 

nextnext

Object
 

Object
 

Object
 

value value value

first

List
 

Cell
 

first

LHS

first
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• Matching: find the subgraphs containing LHS in the source 
graph

Graph Transformation: Pattern matching

List
 

Cell
 

first

next

Object
 

value

Cell
 

Cell
 

Cell
 

nextnext

Object
 

Object
 

Object
 

value value value

first

List
 

Cell
 

first

LHS

first
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• Rewriting the graph by the match: 
replace LHS with RHS.

Graph Transformation: Execution of rewriting

List
 

Cell
 

first

next

Object
 

value

Cell
 

Cell
 

Cell
 

nextnext

Object
 

Object
 

Object
 

value value value

List
 

Cell
 

Cell
 

first

next

Object
 

value

RHS

LHS\RHS → Delete
RHS\LHS → Insert

RHS∩LHS → Leave it
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• We get a new graph

Graph Transformation: Execution of rewriting

List
 

Cell
 

next

Object
 

value

Cell
 

Cell
 

Cell
 

nextnext

Object
 

Object
 

Object
 

value value value

Cell
 

first

next

Object
 

value
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• Infinite state space

• Complete state space exploration is impossible

• Abstraction must be used

• Logical reasoning required

Reasoning over abstract models
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Reasoning over abstract models

• Partial model

• Multiple file operations
• Adding, removing and modifying files and directories

• Possibly called asynchronously

• Can we have a File without any reference pointing to it?

git
FileSystem

main
File

child

child

link
File
Symlink

child

equals

target
project

Dir
File

root child

child

src
Dir
File

resources
Dir
File

child

Dir:new
Dir
File

equals

img
File

child
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Reasoning over abstract models

• Partial model

• Multiple file operations
• Adding, removing and modifying files and directories

• Possibly called asynchronously

• Can we have a File without any reference pointing to it?

git
FileSystem

main
File

child

link
File
Symlink

child

equals

target
project

Dir
File

root child

child

src
Dir
File

resources
Dir
File

child

Dir:new
Dir
File

equals

img
File

Object 
wihtout

reference

child
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Reasoning over abstract models

Concretization

Abstract model 1

Fully specified 
model 1

Abstract model 2

Fully specified 
model 2

Transformation

Abstraction

Reasoning
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Reasoning over abstract models

Concretization

Abstract model 1

Fully specified 
model 1

Abstract model 2

Fully specified 
model 2

Transformation

Transformation

Abstraction

Reasoning

Reasoning

Refinery
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Summary of Refinery

https://refinery.tools

• Logical reasoning and model generation over graphs

• Web-based editor:
• Live editing and feedback

• Support for partial models and graph constraints

• Containerized execution:
• Continuously deployed at https://refinery.services/

• Available as Docker image: https://refinery.tools/learn/docker/

• Framework for graph processing tasks

https://refinery.services/
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