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Automatic Software Verification
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Mostly context-sensitive, whole-program analysis
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= Context: (Automatic) Software Model Checking
= We need low response time.

= Therefore, we need massively parallel approaches.

Solution: Decomposition into blocks, construct contracts automatically

= Goal: Scalable and Distributed Software Verification
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Based on [5]:

Dirk Beyer, Matthias Kettl, Thomas Lemberger:

Decomposing Software Verification using Distributed Summary Synthesis

Proc. ACM on Software Engineering, Volume 1, Issue FSE, 2024.
https://doi.org/10.1145/3660766
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https://doi.org/10.1145/3660766

Overview of Decomposition
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Example: Control-Flow Automaton

1 int main()

2 int x = 0;

3 inty = 0;

4 while (n()) {

5 X++;

6 y++;

7 3} X
8 assert(x ==y);

9}

Safe program

CFA of program
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[ We split a large verification task into multiple smaller subtasks. ]

Requirements for eligible decompositions:

= Each block has exactly one entry and one exit location.
» Loops should be reflected as loops in the block graph.
» Blocks should as large as possible.

= Blocks not bound to functions.

Approach: We decompose the CFA similar to large-block encoding [3].
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Example: Decomposition .
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Each worker runs independently in an own
compute thread/node.

Preconditions describe good entry states of
a block (over-approximating).

Violation condition needs to be refuted to
prove a program safe.

Preconditions are refined until all violation
conditions are refuted or at least one is
confirmed.
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Communication Model

= Workers know their successor X—Zf& [=Me

and predecessors. preg 7%
= Workers maintain a list of [0 = 0)] InO == ol
preconditions, violation @ Ix == Dox == )3
X = x +1
conditions, and their subtask. @
y =y +1
(1) .
vcondpg
—————
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Verification with DSS 1
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Block Result
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Verification with DSS 2
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Block Result
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Verification with DSS 3
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Block Result
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Verification with DSS 4
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Block Result
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Verification with DSS 5
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Block Result
A idle
B idle
C idle

= Fix-point reached, program safe.

X#£Yy

x=y

[n(Q) == 0]

[I(x ==y)]
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Benchmark Setup:

= We evaluate DSS on the subcategory SoftwareSystems of the SV-COMP '23
benchmarks.

= \We focus on the 2485 safe verification tasks.

= We use the SV-COMP [2] benchmark setup:
15 GB RAM and an 8 core Intel Xeon E3-1230 v5 with 3.40 GHz.
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Response time of predicate abstraction (x-axis) vs. DSS (y-axis).

DSS introduces overhead which only pays-off for more complex tasks.
A parallel portfolio combines the best of both worlds.
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Speed-up to CPU time
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1 core 2 cores 4 cores 8 cores

The ratio of the CPU time compared to the response time for 1, 2, 4, and 8 cores.

[ The workload is distributed effectively to multiple processing units. ]
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Task CPUp(s) CPUpss(s) RTp(s) RTpss(s) # threads

leds—leds-regulator... 44.8 33.2 30.8 7.18
rtc—rtc-ds1553.ko-l... 49.0 64.6 30.3 14.0
rtc—rtc-stk17ta8.ko... 46.7 67.9 28.9 15.1
watchdog—it8712f_w... 86.8 50.3 69.0 15.9
ldv-commit-tester/m0...  50.1 103 28.8 21.0

92
164
162
216
230

DSS introduces overhead which only pays-off for more complex tasks.
A parallel portfolio combines the best of both worlds.
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https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/blob/3d65c76d8521ef5bc79077a31e7b7e41dd077309/c/ldv-linux-3.4-simple/43_1a_cilled_ok_nondet_linux-43_1a-drivers--leds--leds-regulator.ko-ldv_main0_sequence_infinite_withcheck_stateful.cil.out.i
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/blob/3d65c76d8521ef5bc79077a31e7b7e41dd077309/c/ldv-linux-3.4-simple/43_1a_cilled_ok_nondet_linux-43_1a-drivers--rtc--rtc-ds1553.ko-ldv_main0_sequence_infinite_withcheck_stateful.cil.out.i
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/blob/3d65c76d8521ef5bc79077a31e7b7e41dd077309/c/ldv-linux-3.4-simple/43_1a_cilled_ok_nondet_linux-43_1a-drivers--rtc--rtc-stk17ta8.ko-ldv_main0_sequence_infinite_withcheck_stateful.cil.out.i
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/blob/3d65c76d8521ef5bc79077a31e7b7e41dd077309/c/ldv-linux-3.4-simple/43_1a_cilled_ok_nondet_linux-43_1a-drivers--watchdog--it8712f_wdt.ko-ldv_main0_sequence_infinite_withcheck_stateful.cil.out.i
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/blob/3d65c76d8521ef5bc79077a31e7b7e41dd077309/c/ldv-commit-tester/m0_drivers-staging-comedi-drivers-ni_65xx-ko--107_1a--adbbc36.i

Related Approaches

Existing approaches have limitations that distributed summary synthesis solves,
most importantly the potential to scale to many nodes:

= InFER [0, 7] scales well but reports many false alarms.
= DSS inherits all properties of the underlying analysis.

= BAM [4] has nested blocks that are not parallelizable.
= DSS parallelizes as much as possible.

= HiFroG [1] is bound to SMT-based model-checking algorithms.
= DSS is domain-independent.
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s DSS can decompose a verification task into independent smaller tasks.
= DSS is domain-independent.

s DSS effectively distributes the workload to multiple processing units.

Supplementary webpage
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https://doi.org/10.5281/zenodo.11563223
https://www.sosy-lab.org/research/distributed-summary-synthesis/
https://doi.org/10.5281/zenodo.11563223
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