Towards

Scalable and Distributed Software Verification

Dirk Beyer, Matthias Kettl, Thomas Lemberger
LMU Munich, Germany

AVM 2024

2024—09—04 LIVIu MAXIMILIANS-

UNIVERSITAT

G Software Systems

Automatic Software Verification

Program

Specification

Result (True/False

Mostly context-sensitive, whole-program analysis

D. Beyer Towards Scalable and Distributed Software Verification 1/20

= Context: (Automatic) Software Model Checking
= We need low response time.

= Therefore, we need massively parallel approaches.

Solution: Decomposition into blocks, construct contracts automatically

= Goal: Scalable and Distributed Software Verification

D. Beyer 2/20

Based on [5]:

Dirk Beyer, Matthias Kettl, Thomas Lemberger:

Decomposing Software Verification using Distributed Summary Synthesis

Proc. ACM on Software Engineering, Volume 1, Issue FSE, 2024.
https://doi.org/10.1145/3660766

D. Beyer 3/20

https://doi.org/10.1145/3660766

Overview of Decomposition

/ Verification Task \ / Subtasks \ / Parallel Processing \

Subtask 1
Subtask 2
(_

Subtask 3
/ ubtas Subtask 1 o Subtask 6

/ % Subtask 4 o

Subtask 5

W

Subtask 6

N VAN VAN)

Overview of the DSS approach

o

D. Beyer Towards Scalable and Distributed Software Verification 4/20

Example: Control-Flow Automaton

1 int main()

2 int x = 0;

3 inty = 0;

4 while (n()) {

5 X++;

6 y++;

7 3} X
8 assert(x ==y);

9}

Safe program

CFA of program

D. Beyer Towards Scalable and Distributed Software Verification 5/20

[We split a large verification task into multiple smaller subtasks.]

Requirements for eligible decompositions:

= Each block has exactly one entry and one exit location.
» Loops should be reflected as loops in the block graph.
» Blocks should as large as possible.

= Blocks not bound to functions.

Approach: We decompose the CFA similar to large-block encoding [3].

D. Beyer 6/20

Example: Decomposition .

preg I \I prec
[t(n() == 0)] O ==
e ()
[x == ['(x == y)]

X :=x + 1

y =y +1
(&) :

vcondpg
T ——

D. Beyer Towards Scalable and Distributed Software Verification 7/20

D. Beyer

Each worker runs independently in an own
compute thread/node.

Preconditions describe good entry states of
a block (over-approximating).

Violation condition needs to be refuted to
prove a program safe.

Preconditions are refined until all violation
conditions are refuted or at least one is
confirmed.

preg

[HnO) ==

<
1
<
o
—_

|-

D@

o]

8/20

Communication Model

= Workers know their successor X—Zf& [=Me

and predecessors. preg 7%
= Workers maintain a list of [0 = 0)] InO == ol
preconditions, violation @ Ix == Dox ==)3
X = x +1
conditions, and their subtask. @
y =y +1
(1) .
vcondpg
—————

D. Beyer Towards Scalable and Distributed Software Verification 9/20

Verification with DSS 1

D. Beyer

Block Result

A
B
C

IMBc:T
I&c:T
IMap:x#y

Towards Scalable and Distributed Software Verification

jm} : C
v] i
[HnO == 0] [n() == 0]
Q @ [I(x ==y)]
X = x +1 .e
yeeye &)
(&) -
€L
__— —
10/20

Verification with DSS 2

D. Beyer

Block Result

A
B
C

™M c:x=y
™Map:x#y
idle

Towards Scalable and Distributed Software Verification

o : C
T I T
[t(n() == 0)] [n() == 0]
Q [x ==y] [I(x ==y)]
X :=x + 1
y =y +1
X#£Yy
__— —
11/20

Verification with DSS 3

D. Beyer

Block Result

IMc:x=y
IMpc:x=y
idle

Towards Scalable and Distributed Software Verification

o : C
— .
[t(n() == 0)] [n() == 0]
Q [x ==y] [I(x ==]
X :=x + 1
y =y +1
X#£Yy
__— —
12/20

Verification with DSS 4

D. Beyer

Block Result

idle
idle
IMg:T

Towards Scalable and Distributed Software Verification

o : C
x=y I xX=y
[t(n() == 0)] [n() == 0]
Q [x ==y] [I(x ==y)]
X :=x + 1
y =y +1
X#£Yy
__— —
13/20

Verification with DSS 5

D. Beyer

Block Result
A idle
B idle
C idle

= Fix-point reached, program safe.

X#£Yy

x=y

[n(Q) == 0]

[I(x ==y)]

Towards Scalable and Distributed Software Verification

14/20

Benchmark Setup:

= We evaluate DSS on the subcategory SoftwareSystems of the SV-COMP '23
benchmarks.

= \We focus on the 2485 safe verification tasks.

= We use the SV-COMP [2] benchmark setup:
15 GB RAM and an 8 core Intel Xeon E3-1230 v5 with 3.40 GHz.

D. Beyer 15/20

900

100

(s) DSS (8 cores)

4\?

Response time

10 100 900
Response time (s) Pred. (2 cores)

Response time of predicate abstraction (x-axis) vs. DSS (y-axis).

DSS introduces overhead which only pays-off for more complex tasks.
A parallel portfolio combines the best of both worlds.

D. Beyer 16/20

=R

Speed-up to CPU time
o N W » (6] o ~ o]

1 core 2 cores 4 cores 8 cores

The ratio of the CPU time compared to the response time for 1, 2, 4, and 8 cores.

[The workload is distributed effectively to multiple processing units.]

D. Beyer 17/20

D. Beyer

Task CPUp(s) CPUpss(s) RTp(s) RTpss(s) # threads

leds—leds-regulator... 44.8 33.2 30.8 7.18
rtc—rtc-ds1553.ko-l... 49.0 64.6 30.3 14.0
rtc—rtc-stk17ta8.ko... 46.7 67.9 28.9 15.1
watchdog—it8712f_w... 86.8 50.3 69.0 15.9
ldv-commit-tester/m0... 50.1 103 28.8 21.0

92
164
162
216
230

DSS introduces overhead which only pays-off for more complex tasks.
A parallel portfolio combines the best of both worlds.

18/20

https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/blob/3d65c76d8521ef5bc79077a31e7b7e41dd077309/c/ldv-linux-3.4-simple/43_1a_cilled_ok_nondet_linux-43_1a-drivers--leds--leds-regulator.ko-ldv_main0_sequence_infinite_withcheck_stateful.cil.out.i
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/blob/3d65c76d8521ef5bc79077a31e7b7e41dd077309/c/ldv-linux-3.4-simple/43_1a_cilled_ok_nondet_linux-43_1a-drivers--rtc--rtc-ds1553.ko-ldv_main0_sequence_infinite_withcheck_stateful.cil.out.i
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/blob/3d65c76d8521ef5bc79077a31e7b7e41dd077309/c/ldv-linux-3.4-simple/43_1a_cilled_ok_nondet_linux-43_1a-drivers--rtc--rtc-stk17ta8.ko-ldv_main0_sequence_infinite_withcheck_stateful.cil.out.i
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/blob/3d65c76d8521ef5bc79077a31e7b7e41dd077309/c/ldv-linux-3.4-simple/43_1a_cilled_ok_nondet_linux-43_1a-drivers--watchdog--it8712f_wdt.ko-ldv_main0_sequence_infinite_withcheck_stateful.cil.out.i
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/blob/3d65c76d8521ef5bc79077a31e7b7e41dd077309/c/ldv-commit-tester/m0_drivers-staging-comedi-drivers-ni_65xx-ko--107_1a--adbbc36.i

Related Approaches

Existing approaches have limitations that distributed summary synthesis solves,
most importantly the potential to scale to many nodes:

= InFER [0, 7] scales well but reports many false alarms.
= DSS inherits all properties of the underlying analysis.

= BAM [4] has nested blocks that are not parallelizable.
= DSS parallelizes as much as possible.

= HiFroG [1] is bound to SMT-based model-checking algorithms.
= DSS is domain-independent.

D. Beyer Towards Scalable and Distributed Software Verification 19/20

s DSS can decompose a verification task into independent smaller tasks.
= DSS is domain-independent.

s DSS effectively distributes the workload to multiple processing units.

Supplementary webpage

D. Beyer 20/20

https://doi.org/10.5281/zenodo.11563223
https://www.sosy-lab.org/research/distributed-summary-synthesis/
https://doi.org/10.5281/zenodo.11563223

D. Beyer

[1]

2]

(3]

[4]

[6]

Alt, L., Asadi, S., Chockler, H., Even-Mendoza, K., Fedyukovich, G., Hyvarinen, A.E.J., Sharygina, N.:
HiFrog: SMT-based function summarization for software verification. In: Proc. TACAS. pp. 207-213.
LNCS 10206 (2017). https://doi.org/10.1007/978-3-662-54580-5_12

Beyer, D.: State of the art in software verification and witness validation: SV-COMP 2024. In: Proc.
TACAS (3) pp. 299-329. LNCS 14572, Springer (2024). https://doi.org/10.1007/978-3-031-57256-2_15

Beyer, D., Cimatti, A., Griggio, A., Keremoglu, M.E., Sebastiani, R.: Software model checking via large-block
encoding. In: Proc. FMCAD. pp. 25-32. IEEE (2009). https://doi.org/10.1109/FMCAD.2009.5351147

Beyer, D., Friedberger, K.: Domain-independent interprocedural program analysis using block-abstraction
memoization. In: Proc. ESEC/FSE. pp. 50-62. ACM (2020). https://doi.org/10.1145/3368089.3409718

Beyer, D., Kettl, M., Lemberger, T.: Decomposing software verification using distributed summary synthesis.

Proc. ACM Softw. Eng. 1(FSE) (2024). https://doi.org/10.1145/3660766
Calcagno, C., Distefano, D., Dubreil, J., Gabi, D., Hooimeijer, P., Luca, M., O'Hearn, P.W.,

Papakonstantinou, I., Purbrick, J., Rodriguez, D.: Moving fast with software verification. In: Proc. NFM. pp.

3-11. LNCS 9058, Springer (2015). https://doi.org/10.1007/978-3-319-17524-9_1

20/20

https://doi.org/10.1007/978-3-662-54580-5_12
https://doi.org/10.1007/978-3-031-57256-2_15
https://doi.org/10.1109/FMCAD.2009.5351147
https://doi.org/10.1145/3368089.3409718
https://doi.org/10.1145/3660766
https://doi.org/10.1007/978-3-319-17524-9_1

References 1l

[7] Kettl, M., Lemberger, T.: The static analyzer INFER in SV-COMP (competition contribution). In: Proc.
TACAS (2). pp. 451-456. LNCS 13244, Springer (2022). https://doi.org/10.1007/978-3-030-99527-0_30

D. Beyer Towards Scalable and Distributed Software Verification 20/20

https://doi.org/10.1007/978-3-030-99527-0_30

