
Abstraction-based model checking
for real-time software-intensive
system models

Dóra Cziborová

Alpine Verification Meeting 2024

Model checking

2

SystemRequirement

Formalized
requirement

Formal
model

Model checker

🗸 ✗

Model checking

2

SystemRequirement

Formalized
requirement

Formal
model

Model checker

🗸 ✗

Reachability

Model checking – system models

3

• Focus: real-time software-
intensive systems

• State-based representation,
e.g. statecharts

SystemRequirement

Formalized
requirement

Formal
model

Model checker

🗸 ✗

Reachability

Model checking – formal models

4

• Intermediate formalisms:

• High-level language
constructs

• More expressive than
low-level formal models

• Easier mapping from
system models

• The XSTS formalism – eXtended
Symbolic Transition System

SystemRequirement

Formalized
requirement

Formal
model

Model checker

🗸 ✗

Reachability

Model checking – abstraction

5

SystemRequirement

Formalized
requirement

Formal
model

Model checker

🗸 ✗

• # of data variables
• Continuous time

• Abstraction

• State space:
abstract
reachability
graph
(ARG)

state space
explosion

Reachability

6

I. An intermediate formalism is required

• Existing formalism: timed automata

• Extending the XSTS formalism by timing

II. Supporting the verification of timed XSTS models

• Usual challenges of timed verification

• Challenges specific to the timed XSTS formalism

Steps to verify timed software-intensive models

7

The XSTS formalism

type State : {Q}
ctrl var state : State = Q
var x : integer = 0
var y : integer = 0

trans {
 if (state == Q) {
 choice {
 havoc x;
 } or {
 y := x + 1;
 }
 }
}

Environment

Simple statechart model XSTS representation

8

XSTS language constructs

8

XSTS language constructs

Assumption

assume y > x;

8

XSTS language constructs

Assumption Assignment

assume y > x; y := x + 1;

8

XSTS language constructs

Assumption Assignment
Non-deterministic

assignment

assume y > x; havoc x;y := x + 1;

8

XSTS language constructs

Assumption Assignment
Non-deterministic

assignment

Conditional
operation

assume y > x; havoc x;y := x + 1;

if (x > 0) {
 ...
} else {
 ...
}

8

XSTS language constructs

Assumption Assignment
Non-deterministic

assignment

Conditional
operation

Non-deterministic
operation

assume y > x; havoc x;y := x + 1;

if (x > 0) {
 ...
} else {
 ...
}

choice {
 ...
} or {
 ...
} or {
...

8

XSTS language constructs

Assumption Assignment
Non-deterministic

assignment

Conditional
operation

Non-deterministic
operation

Counting loop

assume y > x; havoc x;y := x + 1;

if (x > 0) {
 ...
} else {
 ...
}

choice {
 ...
} or {
 ...
} or {
...

for i from 0 to x do {
 ...
}

• XSTS extended by clock variables and clock operations

9

The TXSTS formalism – Timed XSTS

• XSTS extended by clock variables and clock operations

Clock set / reset

c := 0;

c := 500;

9

The TXSTS formalism – Timed XSTS

• XSTS extended by clock variables and clock operations

Clock set / reset

c := 0;

c := 500;

9

The TXSTS formalism – Timed XSTS

Clock constraints

assume c1 – c2 > 0;

if (c > 500 || …) …

• XSTS extended by clock variables and clock operations

Clock set / reset

c := 0;

c := 500;

9

The TXSTS formalism – Timed XSTS

Clock constraints Increment all clocks

assume c1 – c2 > 0;

if (c > 500 || …) …
__delay;

10

Verification approaches for TXSTS models

Engineering
model

High-level
formal model

TXSTS

Mapping to
intermediate

formalism

10

Verification approaches for TXSTS models

Engineering
model

High-level
formal model

TXSTS

Mapping to
intermediate

formalism

High-level
formal model

XSTS

Time → data
transform.

10

Verification approaches for TXSTS models

Engineering
model

High-level
formal model

TXSTS

Mapping to
intermediate

formalism

High-level
formal model

XSTS

Abstraction
algorithms

Time → data
transform.

Abstract
data domain

10

Verification approaches for TXSTS models

Engineering
model

High-level
formal model

TXSTS

Mapping to
intermediate

formalism

High-level
formal model

XSTS

Abstraction
algorithms

Time → data
transform.

Abstract
data domain

10

Verification approaches for TXSTS models

Engineering
model

High-level
formal model

TXSTS

Mapping to
intermediate

formalism

High-level
formal model

XSTS

Abstraction
algorithms

Result of
verification

Time → data
transform.

Abstract
data domain

10

Verification approaches for TXSTS models

Engineering
model

High-level
formal model

TXSTS

Mapping to
intermediate

formalism

High-level
formal model

XSTS

Abstraction
algorithms

Result of
verification

Mapping

Time → data
transform.

Abstract
data domain

10

Verification approaches for TXSTS models

Engineering
model

High-level
formal model

TXSTS

Modified
combined verification

algorithm

Mapping to
intermediate

formalism

High-level
formal model

XSTS

Abstraction
algorithms

Result of
verification

Mapping

Time → data
transform.

Abstract
data domain

Abstract
data domain

10

Verification approaches for TXSTS models

Engineering
model

High-level
formal model

TXSTS

Modified
combined verification

algorithm

Mapping to
intermediate

formalism

High-level
formal model

XSTS

Abstraction
algorithms

Result of
verification

Mapping

Time → data
transform.

Abstract
data domain

Abstract
data domain

10

Verification approaches for TXSTS models

Engineering
model

High-level
formal model

TXSTS

Modified
combined verification

algorithm

Mapping to
intermediate

formalism

High-level
formal model

XSTS

Abstraction
algorithms

Abstract time
domain

Result of
verification

Mapping

Time → data
transform.

Abstract
data domain

Abstract
data domain

10

Verification approaches for TXSTS models

Engineering
model

High-level
formal model

TXSTS

Modified
combined verification

algorithm

Mapping to
intermediate

formalism

High-level
formal model

XSTS

Abstraction
algorithms

Abstract time
domain

Result of
verification

Mapping

Time → data
transform.

11

• Clocks to rational variables

• Clock operations to data operations

1st approach: transformation of TXSTS to XSTS

c1 := 0;

Clock variable Data variable

c1 := 0;

11

• Clocks to rational variables

• Clock operations to data operations

1st approach: transformation of TXSTS to XSTS

c1 := 0;

havoc _d;
assume _d >= 0;
c1 := c1 + _d;
c2 := c2 + _d;

Clock variable Data variable

__delay;c1 := 0;

Advance of time

_d is nondeterministic
and nonnegative

11

• Clocks to rational variables

• Clock operations to data operations

• Existing algorithms can be used without modification

• Efficient time abstraction techniques cannot be used

1st approach: transformation of TXSTS to XSTS

c1 := 0;

havoc _d;
assume _d >= 0;
c1 := c1 + _d;
c2 := c2 + _d;

Clock variable Data variable

__delay;c1 := 0;

Advance of time

_d is nondeterministic
and nonnegative

12

• Existing abstraction-based techniques: lazy abstraction, CEGAR

• Building on combined abstraction
– Lazy abstraction for timing, CEGAR for data

2nd approach: verification of TXSTS models

12

• Existing abstraction-based techniques: lazy abstraction, CEGAR

• Building on combined abstraction
– Lazy abstraction for timing, CEGAR for data

2nd approach: verification of TXSTS models

12

• Existing abstraction-based techniques: lazy abstraction, CEGAR

• Building on combined abstraction
– Lazy abstraction for timing, CEGAR for data

2nd approach: verification of TXSTS models

13

• Existing abstraction-based techniques: lazy abstraction, CEGAR

• Building on combined abstraction
– Lazy abstraction for timing, CEGAR for data

 Existing algorithms presume that the results of operations
 can be computed individually for timing and data

2nd approach: verification of TXSTS models

13

• Existing abstraction-based techniques: lazy abstraction, CEGAR

• Building on combined abstraction
– Lazy abstraction for timing, CEGAR for data

 Existing algorithms presume that the results of operations
 can be computed individually for timing and data

• A problematic example, with data variable x and clock variable c

if ((x == 0 && c > 500) || (x == 1 && c < 400))
{ ... }

2nd approach: verification of TXSTS models

13

• Existing abstraction-based techniques: lazy abstraction, CEGAR

• Building on combined abstraction
– Lazy abstraction for timing, CEGAR for data

 Existing algorithms presume that the results of operations
 can be computed individually for timing and data

• A problematic example, with data variable x and clock variable c

if ((x == 0 && c > 500) || (x == 1 && c < 400))
{ ... }

• Solution: control flow splitting

2nd approach: verification of TXSTS models

14

Control flow splitting

Operation

Transformed
operation

Constraints
over Bool vars

Transformation:
introducing new Boolean variables,
and constraints on these variables

14

Control flow splitting

Operation

Transformed
operation

Constraints
over Bool vars

Transformation:
introducing new Boolean variables,
and constraints on these variables

Satisfying
assignment

Control
flow

14

Control flow splitting

Operation

Transformed
operation

Constraints
over Bool vars

Variable
assignments

Transformation:
introducing new Boolean variables,
and constraints on these variables

All-SAT
problem

Satisfying
assignment

Control
flow

14

Control flow splitting

Operation

Transformed
operation

Constraints
over Bool vars

Variable
assignments

Transformation:
introducing new Boolean variables,
and constraints on these variables

Set of final operations

All-SAT
problem

Satisfying
assignment

Control
flow

Independent timing and data,
existing methods can be used

for verification

15

Boolean vars + constraints: satisfying assignment  control flow

Example – operation transformation

if (x == 0 && c < 5) {
 x := x + 1;
} else {
 c := 0;
}

ClockData

15

Boolean vars + constraints: satisfying assignment  control flow

Example – operation transformation

if (x == 0 && c < 5) {
 x := x + 1;
} else {
 c := 0;
}

if (b1) {
 assume x == 0 && c < 5;
 x := x + 1;
}

ClockData

15

Boolean vars + constraints: satisfying assignment  control flow

Example – operation transformation

if (x == 0 && c < 5) {
 x := x + 1;
} else {
 c := 0;
}

if (b1) {
 assume x == 0 && c < 5;
 x := x + 1;
}
if (b2) {
 assume !(x == 0) || !(c < 5);
 c := 0;
}

ClockData

15

Boolean vars + constraints: satisfying assignment  control flow

Example – operation transformation

if (x == 0 && c < 5) {
 x := x + 1;
} else {
 c := 0;
}

if (b1) {
 assume x == 0 && c < 5;
 x := x + 1;
}
if (b2) {
 assume !(x == 0) || !(c < 5);
 c := 0;
}

ClockData

Constraints:
• b1 xor b2

16

Boolean vars + constraints: satisfying assignment  control flow

Example – operation transformation

if (b1) {
 assume x == 0 && c < 5;
 x := x + 1;
}
if (b2) {
 assume !(x == 0) || !(c < 5);
 c := 0;
}

ClockData

Constraints:
• b1 xor b2

if (x == 0 && c < 5) {
 x := x + 1;
} else {
 c := 0;
}

ClockData

16

Boolean vars + constraints: satisfying assignment  control flow

Example – operation transformation

if (b1) {
 assume x == 0 && c < 5;
 x := x + 1;
}
if (b2) {
 assume !(x == 0) || !(c < 5);
 c := 0;
} Constraints:

• b1 xor b2

assume x == 0;
assume c < 5;if (x == 0 && c < 5) {

 x := x + 1;
} else {
 c := 0;
}

16

Boolean vars + constraints: satisfying assignment  control flow

Example – operation transformation

if (b1) {
 assume x == 0 && c < 5;
 x := x + 1;
}
if (b2) {
 assume !(x == 0) || !(c < 5);
 c := 0;
} Constraints:

• b1 xor b2

assume x == 0;
assume c < 5;

choice {
 assume !(x == 0);
} or {
 assume !(c < 5);
}

if (x == 0 && c < 5) {
 x := x + 1;
} else {
 c := 0;
}

16

Boolean vars + constraints: satisfying assignment  control flow

Example – operation transformation

if (b1) {
 assume x == 0 && c < 5;
 x := x + 1;
}
if (b2) {
 assume !(x == 0) || !(c < 5);
 c := 0;
} Constraints:

• b1 xor b2

assume x == 0;
assume c < 5;

choice {
 assume !(x == 0);
} or {
 assume !(c < 5);
}

if (b3) {
 assume !(x == 0);
}
if (b4) {
 assume !(c < 5);
}

if (x == 0 && c < 5) {
 x := x + 1;
} else {
 c := 0;
}

16

Boolean vars + constraints: satisfying assignment  control flow

Example – operation transformation

if (b1) {
 assume x == 0 && c < 5;
 x := x + 1;
}
if (b2) {
 assume !(x == 0) || !(c < 5);
 c := 0;
} Constraints:

• b1 xor b2
• b2 

(b3b4)(b3b4)

assume x == 0;
assume c < 5;

choice {
 assume !(x == 0);
} or {
 assume !(c < 5);
}

if (b3) {
 assume !(x == 0);
}
if (b4) {
 assume !(c < 5);
}

if (x == 0 && c < 5) {
 x := x + 1;
} else {
 c := 0;
}

16

Boolean vars + constraints: satisfying assignment  control flow

Example – operation transformation

if (b1) {
 assume x == 0 && c < 5;
 x := x + 1;
}
if (b2) {
 assume !(x == 0) || !(c < 5);
 c := 0;
} Constraints:

• b1 xor b2
• b2 

(b3b4)(b3b4)
• b2  b3
• b2  b4

assume x == 0;
assume c < 5;

choice {
 assume !(x == 0);
} or {
 assume !(c < 5);
}

if (b3) {
 assume !(x == 0);
}
if (b4) {
 assume !(c < 5);
}

if (x == 0 && c < 5) {
 x := x + 1;
} else {
 c := 0;
}

17

Boolean vars + constraints: satisfying assignment  control flow

Example – operation transformation

if (b1) {
assume x == 0;
assume c < 5;

 x := x + 1;
}
if (b2) {
 if (b3) {
 assume !(x == 0);

}
if (b4) {

assume !(c < 5);
}

 c := 0;
}

Constraints:
• b1 xor b2
• b2 

(b3b4)(b3b4)
• b2  b3
• b2  b4

if (x == 0 && c < 5) {
 x := x + 1;
} else {
 c := 0;
}

18

Boolean vars + constraints: satisfying assignment  control flow

Example – control flow with an SMT solver

if (x == 0 && c < 5) {
 x := x + 1;
} else {
 c := 0;
}

if (b1) { b1 = false
assume x == 0;
assume c < 5;

 x := x + 1;
}
if (b2) { b2 = true
 if (b3) { b3 = true
 assume !(x == 0);

}
if (b4) { b4 = false

assume !(c < 5);
}

 c := 0;
}

Constraints:
• b1 xor b2
• b2 

(b3b4)(b3b4)
• b2  b3
• b2  b4

18

Boolean vars + constraints: satisfying assignment  control flow

Example – control flow with an SMT solver

if (x == 0 && c < 5) {
 x := x + 1;
} else {
 c := 0;
}

if (b1) { b1 = false
assume x == 0;
assume c < 5;

 x := x + 1;
}
if (b2) { b2 = true
 if (b3) { b3 = true
 assume !(x == 0);

}
if (b4) { b4 = false

assume !(c < 5);
}

 c := 0;
}

Constraints:
• b1 xor b2
• b2 

(b3b4)(b3b4)
• b2  b3
• b2  b4

assume !(x == 0);
c := 0;

18

Boolean vars + constraints: satisfying assignment  control flow

Example – control flow with an SMT solver

if (x == 0 && c < 5) {
 x := x + 1;
} else {
 c := 0;
}

if (b1) { b1 = false
assume x == 0;
assume c < 5;

 x := x + 1;
}
if (b2) { b2 = true
 if (b3) { b3 = true
 assume !(x == 0);

}
if (b4) { b4 = false

assume !(c < 5);
}

 c := 0;
}

Constraints:
• b1 xor b2
• b2 

(b3b4)(b3b4)
• b2  b3
• b2  b4

assume !(x == 0);
c := 0;

assume !(c < 5);
c := 0;

assume x == 0;
assume c < 5;
x := x + 1;

19

• Implemented in the Theta open source verification framework

• Two TXSTS models from Gamma engineering models:
– Example model demonstrating the capabilities of Gamma: crossroad

– Industrial case study: model of a safety-critical railway protocol

• 30 reachability properties, analyzed in two ways:
– Reachability of a given state

– Timed reachability: reachability of given state under a given time limit

Preliminary evaluation of the approaches

20

• 3 CPU cores, time limit of 20 minutes, memory limit of 15 GB

• Best configurations of both approaches compared:
number of verified properties, with mean CPU time

• Reachability: same success rate, time→data transf. is faster

• Timed reachability: control flow splitting is more successful

Preliminary evaluation of the approaches

Approach
Verified properties with time limit of 20 minutes

Reachability Timed reachability

Time → data transformation
30/30 (100%)

7.48 s
12/30 (40%)

2.26 s

Combined abstraction
with control flow splitting

30/30 (100%)
11.09 s

18/30 (60%)
40.99 s

21

Summary
High-level

formal model

TXSTS

Modified
combined verification

algorithm

Existing
abstraction algorithms
(no time abstraction)

Result of
verification

Time → data
transformation

Control flow
splitting

	Slide 1: Abstraction-based model checking for real-time software-intensive system models
	Slide 2: Model checking
	Slide 3: Model checking
	Slide 4: Model checking – system models
	Slide 5: Model checking – formal models
	Slide 6: Model checking – abstraction
	Slide 7: Steps to verify timed software-intensive models
	Slide 8: The XSTS formalism
	Slide 9: XSTS language constructs
	Slide 10: XSTS language constructs
	Slide 11: XSTS language constructs
	Slide 12: XSTS language constructs
	Slide 13: XSTS language constructs
	Slide 14: XSTS language constructs
	Slide 15: XSTS language constructs
	Slide 16: The TXSTS formalism – Timed XSTS
	Slide 17: The TXSTS formalism – Timed XSTS
	Slide 18: The TXSTS formalism – Timed XSTS
	Slide 19: The TXSTS formalism – Timed XSTS
	Slide 20: Verification approaches for TXSTS models
	Slide 21: Verification approaches for TXSTS models
	Slide 22: Verification approaches for TXSTS models
	Slide 23: Verification approaches for TXSTS models
	Slide 24: Verification approaches for TXSTS models
	Slide 25: Verification approaches for TXSTS models
	Slide 26: Verification approaches for TXSTS models
	Slide 27: Verification approaches for TXSTS models
	Slide 28: Verification approaches for TXSTS models
	Slide 29: Verification approaches for TXSTS models
	Slide 30: 1st approach: transformation of TXSTS to XSTS
	Slide 31: 1st approach: transformation of TXSTS to XSTS
	Slide 32: 1st approach: transformation of TXSTS to XSTS
	Slide 33: 2nd approach: verification of TXSTS models
	Slide 34: 2nd approach: verification of TXSTS models
	Slide 35: 2nd approach: verification of TXSTS models
	Slide 36: 2nd approach: verification of TXSTS models
	Slide 37: 2nd approach: verification of TXSTS models
	Slide 38: 2nd approach: verification of TXSTS models
	Slide 39: Control flow splitting
	Slide 40: Control flow splitting
	Slide 41: Control flow splitting
	Slide 42: Control flow splitting
	Slide 43: Example – operation transformation
	Slide 44: Example – operation transformation
	Slide 45: Example – operation transformation
	Slide 46: Example – operation transformation
	Slide 47: Example – operation transformation
	Slide 48: Example – operation transformation
	Slide 49: Example – operation transformation
	Slide 50: Example – operation transformation
	Slide 51: Example – operation transformation
	Slide 52: Example – operation transformation
	Slide 53: Example – operation transformation
	Slide 54: Example – control flow with an SMT solver
	Slide 55: Example – control flow with an SMT solver
	Slide 56: Example – control flow with an SMT solver
	Slide 57: Preliminary evaluation of the approaches
	Slide 58: Preliminary evaluation of the approaches
	Slide 59: Summary

