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• Focus: real-time software-
intensive systems

• State-based representation, 
e.g. statecharts
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• Intermediate formalisms:

• High-level language
constructs

• More expressive than
low-level formal models

• Easier mapping from
system models

• The XSTS formalism – eXtended
Symbolic Transition System
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• # of data variables
• Continuous time

• Abstraction
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abstract
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graph
(ARG)

state space
explosion
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I. An intermediate formalism is required

• Existing formalism: timed automata

• Extending the XSTS formalism by timing

II. Supporting the verification of timed XSTS models

• Usual challenges of timed verification

• Challenges specific to the timed XSTS formalism

Steps to verify timed software-intensive models
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The XSTS formalism

type State : {Q}
ctrl var state : State = Q
var x : integer = 0
var y : integer = 0

trans {
    if (state == Q) {
        choice {
            havoc x;
        } or {
            y := x + 1;
        }
    }
}

Environment

Simple statechart model XSTS representation
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XSTS language constructs
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XSTS language constructs

Assumption

assume y > x;
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XSTS language constructs

Assumption Assignment

assume y > x; y := x + 1;
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XSTS language constructs

Assumption Assignment
Non-deterministic

assignment

assume y > x; havoc x;y := x + 1;
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XSTS language constructs

Assumption Assignment
Non-deterministic

assignment

Conditional
operation

assume y > x; havoc x;y := x + 1;

if (x > 0) {
    ...
} else {
    ...
}
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XSTS language constructs

Assumption Assignment
Non-deterministic

assignment

Conditional
operation

Non-deterministic
operation

assume y > x; havoc x;y := x + 1;

if (x > 0) {
    ...
} else {
    ...
}

choice {
    ...
} or {
    ...
} or { 
...
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XSTS language constructs

Assumption Assignment
Non-deterministic

assignment

Conditional
operation

Non-deterministic
operation

Counting loop

assume y > x; havoc x;y := x + 1;

if (x > 0) {
    ...
} else {
    ...
}

choice {
    ...
} or {
    ...
} or { 
...

for i from 0 to x do {
    ...
}
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c := 500;
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• XSTS extended by clock variables and clock operations

Clock set / reset

c := 0;

c := 500;
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The TXSTS formalism – Timed XSTS

Clock constraints

assume c1 – c2 > 0;

if (c > 500 || …) …



• XSTS extended by clock variables and clock operations

Clock set / reset

c := 0;

c := 500;

9

The TXSTS formalism – Timed XSTS

Clock constraints Increment all clocks

assume c1 – c2 > 0;

if (c > 500 || …) …
__delay;
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Verification approaches for TXSTS models
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• Clocks to rational variables

• Clock operations to data operations

                                                     

                                                     

1st approach: transformation of TXSTS to XSTS

c1 := 0;

Clock variable Data variable

c1 := 0;
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• Clocks to rational variables

• Clock operations to data operations

                                                     

                                                     

1st approach: transformation of TXSTS to XSTS

c1 := 0;

havoc _d;
assume _d >= 0; 
c1 := c1 + _d;
c2 := c2 + _d;

Clock variable Data variable

__delay;c1 := 0;

Advance of time

_d is nondeterministic
and nonnegative
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• Clocks to rational variables

• Clock operations to data operations

• Existing algorithms can be used without modification

• Efficient time abstraction techniques cannot be used

1st approach: transformation of TXSTS to XSTS

c1 := 0;

havoc _d;
assume _d >= 0; 
c1 := c1 + _d;
c2 := c2 + _d;

Clock variable Data variable

__delay;c1 := 0;

Advance of time

_d is nondeterministic
and nonnegative
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– Lazy abstraction for timing, CEGAR for data

2nd approach: verification of TXSTS models
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• Building on combined abstraction
– Lazy abstraction for timing, CEGAR for data

 Existing algorithms presume that the results of operations
 can be computed individually for timing and data

• A problematic example, with data variable x and clock variable c

if ((x == 0 && c > 500) || (x == 1 && c < 400))
{ ... }
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• Existing abstraction-based techniques: lazy abstraction, CEGAR

• Building on combined abstraction
– Lazy abstraction for timing, CEGAR for data

 Existing algorithms presume that the results of operations
 can be computed individually for timing and data

• A problematic example, with data variable x and clock variable c

if ((x == 0 && c > 500) || (x == 1 && c < 400))
{ ... }

• Solution: control flow splitting

2nd approach: verification of TXSTS models
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and constraints on these variables
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Control flow splitting

Operation

Transformed 
operation

Constraints 
over Bool vars

Variable 
assignments

Transformation:
introducing new Boolean variables, 
and constraints on these variables

Set of final operations

All-SAT 
problem

Satisfying 
assignment

Control 
flow

Independent timing and data, 
existing methods can be used 

for verification
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Boolean vars + constraints:  satisfying assignment  control flow

Example – operation transformation

if (x == 0 && c < 5) {
    x := x + 1;
} else {
    c := 0;
}

         
                            
                
  
          
                    
            
  

ClockData
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Boolean vars + constraints:  satisfying assignment  control flow

Example – operation transformation

if (x == 0 && c < 5) {
    x := x + 1;
} else {
    c := 0;
}

if (b1) {
    assume x == 0 && c < 5;
    x := x + 1;
}
          
                    
            
  

ClockData
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Boolean vars + constraints:  satisfying assignment  control flow

Example – operation transformation

if (x == 0 && c < 5) {
    x := x + 1;
} else {
    c := 0;
}

if (b1) {
    assume x == 0 && c < 5;
    x := x + 1;
}
if (b2) {
    assume !(x == 0) || !(c < 5);
    c := 0;
}

ClockData
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Boolean vars + constraints:  satisfying assignment  control flow

Example – operation transformation

if (b1) {
    assume x == 0 && c < 5;
    x := x + 1;
}
if (b2) {
    assume !(x == 0) || !(c < 5);
    c := 0;
}

ClockData

Constraints: 
• b1 xor b2

if (x == 0 && c < 5) {
    x := x + 1;
} else {
    c := 0;
}

ClockData
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Boolean vars + constraints:  satisfying assignment  control flow

Example – operation transformation

if (b1) {
    assume x == 0 && c < 5;
    x := x + 1;
}
if (b2) {
    assume !(x == 0) || !(c < 5);
    c := 0;
} Constraints: 

• b1 xor b2

assume x == 0;
assume c < 5;if (x == 0 && c < 5) {

    x := x + 1;
} else {
    c := 0;
}
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Boolean vars + constraints:  satisfying assignment  control flow

Example – operation transformation

if (b1) {
    assume x == 0 && c < 5;
    x := x + 1;
}
if (b2) {
    assume !(x == 0) || !(c < 5);
    c := 0;
} Constraints: 

• b1 xor b2

assume x == 0;
assume c < 5;

choice {
    assume !(x == 0);
} or {
    assume !(c < 5);
}

if (x == 0 && c < 5) {
    x := x + 1;
} else {
    c := 0;
}
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} else {
    c := 0;
}
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Boolean vars + constraints:  satisfying assignment  control flow

Example – operation transformation

if (b1) {
assume x == 0;
assume c < 5;

    x := x + 1;
}
if (b2) {
    if (b3) {
    assume !(x == 0);

}
if (b4) {

assume !(c < 5);
}

    c := 0;
}

Constraints: 
• b1 xor b2
• b2 

(b3b4)(b3b4)
• b2  b3
• b2  b4

if (x == 0 && c < 5) {
    x := x + 1;
} else {
    c := 0;
}
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Boolean vars + constraints:  satisfying assignment  control flow

Example – control flow with an SMT solver

if (x == 0 && c < 5) {
    x := x + 1;
} else {
    c := 0;
}

if (b1) { b1 = false
assume x == 0;
assume c < 5;

    x := x + 1;
}
if (b2) { b2 = true
    if (b3) { b3 = true
    assume !(x == 0);

}
if (b4) { b4 = false

assume !(c < 5);
}

    c := 0;
}

Constraints: 
• b1 xor b2
• b2 

(b3b4)(b3b4)
• b2  b3
• b2  b4
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Boolean vars + constraints:  satisfying assignment  control flow

Example – control flow with an SMT solver

if (x == 0 && c < 5) {
    x := x + 1;
} else {
    c := 0;
}

if (b1) { b1 = false
assume x == 0;
assume c < 5;

    x := x + 1;
}
if (b2) { b2 = true
    if (b3) { b3 = true
    assume !(x == 0);

}
if (b4) { b4 = false

assume !(c < 5);
}

    c := 0;
}

Constraints: 
• b1 xor b2
• b2 

(b3b4)(b3b4)
• b2  b3
• b2  b4

assume !(x == 0);
c := 0;
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Boolean vars + constraints:  satisfying assignment  control flow

Example – control flow with an SMT solver

if (x == 0 && c < 5) {
    x := x + 1;
} else {
    c := 0;
}

if (b1) { b1 = false
assume x == 0;
assume c < 5;

    x := x + 1;
}
if (b2) { b2 = true
    if (b3) { b3 = true
    assume !(x == 0);

}
if (b4) { b4 = false

assume !(c < 5);
}

    c := 0;
}

Constraints: 
• b1 xor b2
• b2 

(b3b4)(b3b4)
• b2  b3
• b2  b4

assume !(x == 0);
c := 0;

assume !(c < 5);
c := 0;

assume x == 0;
assume c < 5;
x := x + 1;
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• Implemented in the Theta open source verification framework

• Two TXSTS models from Gamma engineering models:
– Example model demonstrating the capabilities of Gamma: crossroad

– Industrial case study: model of a safety-critical railway protocol

• 30 reachability properties, analyzed in two ways:
– Reachability of a given state

– Timed reachability: reachability of given state under a given time limit

Preliminary evaluation of the approaches
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• 3 CPU cores, time limit of 20 minutes, memory limit of 15 GB

• Best configurations of both approaches compared:
number of verified properties, with mean CPU time

• Reachability: same success rate, time→data transf. is faster

• Timed reachability: control flow splitting is more successful

Preliminary evaluation of the approaches

Approach
Verified properties with time limit of 20 minutes

Reachability Timed reachability

Time → data transformation
30/30 (100%)

7.48 s
12/30 (40%)

2.26 s

Combined abstraction
with control flow splitting

30/30 (100%)
11.09 s

18/30 (60%)
40.99 s
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Summary
High-level

formal model

TXSTS

Modified
combined verification

algorithm

Existing
abstraction algorithms
(no time abstraction)

Result of 
verification

Time → data
transformation

Control flow 
splitting
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