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Model checking - system models

Requirement

Reachability |

Formalized
requirement

Formal
model

Model checker

 Focus: real-time software-
intensive systems

 State-based representation,
e.g. statecharts
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Model checking - formal models

Requirement

* Intermediate formalisms: \
- High-level language

Reachability | ‘

Formalized Formal constructs
requirement model - More expressive than
‘ low-level formal models
« Easier mapping from

’ ‘ « The XSTS formalism - eXtended
@ @ \Symbolic Transition System /
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Model checking - abstraction

state spg

Requirement

o « # of data variables
Reachability | ‘ . Continuous time explosion
Formalized Formal « Abstraction
requirement model . State space: ¢
‘ ‘ abstract
reachability
Model checker graph

(ARG) e

Y/




Steps to verify timed software-intensive models

. Anintermediate formalism is required
* Existing formalism: timed automata
« Extending the XSTS formalism by timing

Il. Supporting the verification of timed XSTS models
 Usual challenges of timed verification
 Challenges specific to the timed XSTS formalism




The XSTS formalism

Simple statechart model XSTS representation
type State : {Q}

ctrl var state : State = Q
var x : integer = 0

var y : integer = 0
a ———>[éii;;;)/_ trans {

if (state == Q) {
choice {
havoc X;

+oor {
y = X + 1;
}




XSTS language constructs
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assume y > X;




XSTS language constructs
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assume y > X; y = X + 1;
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assume y > X; y = X + 1; havoc X;

Non-deterministic
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Conditional
operation

if (x > 9) {

} else {
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XSTS language constructs

m

Non-deterministic

assignment

assume y > X; havoc X;
Conditional Non-deterministic
operation operation

if (x > 90) { choice {

} else { } or {

} }OP.%.




XSTS language constructs

m

Non-deterministic

assignment

assume y > X; havoc X;
Conditional Non-deterministic
Counting loop
operation operation
if (x > 90) { choice { for 1 from © to x do {
} else { } or { }

} }OP.%.




The TXSTS formalism - Timed XSTS

« XSTS extended by clock variables and clock operations




The TXSTS formalism - Timed XSTS

« XSTS extended by clock variables and clock operations

Clock set / reset




The TXSTS formalism - Timed XSTS

« XSTS extended by clock variables and clock operations

Clock set / reset Clock constraints

cC := 0O; assume cl - c2 > 9;

500; if (c > 500 || ..) ..

c .




The TXSTS formalism - Timed XSTS

« XSTS extended by clock variables and clock operations

Clock set / reset Clock constraints Increment all clocks

cC := 0O; assume cl - c2 > 9;

__delay;
500; if (c > 500 || ..) ..

c .
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1st approach: transformation of TXSTS to XSTS

* Clocks to rational variables
* Clock operations to data operations

@variable ] &tivariable]

cl := 0; ‘ cl := 0;




1st approach: transformation of TXSTS to XSTS

* Clocks to rational variables
* Clock operations to data operations

_d is nondeterministic
and nonnegative

@variable ] &tivariable] havoc d;
assume _d >= 0;

cl:=0; WP cl:-o; _delay; W ;.. ],

C2 := Cc2 +
Advance of time ]

_d;
_d;
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1st approach: transformation of TXSTS to XSTS

* Clocks to rational variables
* Clock operations to data operations

_d is nondeterministic
and nonnegative

@variable ] &tivariable] havoc d;
assume _d >= 0;

cl:=0; WP cl:-o; _delay; W ;.. ],

C2 := Cc2 +
Advance of time ]

« Existing algorithms can be used without modification

_d;
_d;

« Efficient time abstraction techniques cannot be used

11




2"d approach: verification of TXSTS models

* Existing abstraction-based techniques: lazy abstraction, CEGAR

* Building on combined abstraction
- Lazy abstraction for timing, CEGAR for data
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2"d approach: verification of TXSTS models

* Existing abstraction-based techniques: lazy abstraction, CEGAR

* Building on combined abstraction
- Lazy abstraction for timing, CEGAR for data

Initial data Refined data
precision precision
h 4
'\

Lazy s
Abstractor

Initial

Abstractor SIEEEEn

: 1
Abstraction R Lazy Time WY Eager Data Refiner Refined
- == Abstractor il Abstractor precision
- I ol | Eager Data
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|

Abstract
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2"d approach: verification of TXSTS models

* Existing abstraction-based techniques: lazy abstraction, CEGAR

* Building on combined abstraction
- Lazy abstraction for timing, CEGAR for data

Existing algorithms presume that the results of operations
can be computed individually for timing and data

A problematic example, with data variable x and clock variable c

if ((x == 0 && ¢ > 500) || (x == 1 && ¢ < 400))
{ ...}

« Solution: control flow splitting

13
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Control flow splitting

f Transformation: A

introducing new Boolean variables,
and constraints on these variables

Transformed Constraints Satisfyi Control
operation over Bool vars a.lsfylng ontro

assignment flow
‘ All-SAT | )

Varlabl problem J
assignments N\

Independent timing and data,
existing methods can be used
for verification

Set of final operatlons

J




Example - operation transformation

Boolean vars + constraints: satisfying assignment <> control flow

Data Clock

if (x == 0 & c < 5) {
X 1= X + 1;

} else {
cC := 0;

}




Example - operation transformation

Boolean vars + constraints: satisfying assignment <> control flow

Clock if (b1) {
assume X == 0 && c < 5; ]

@&&C<5){]_[x:=x+1;

X + 1; }

9;
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Example - operation transformation

Boolean vars + constraints: satisfying assignment <> control flow

Clock if (b1) {
assume X == 0 && ¢ < 5;
O & c < 5) {]_x:=x+1;
X + 1; }
if (b2) {

—[assume I(x ==0) []| !(c < 5)3]

cC := 0;
}

15




Example - operation transformation

Boolean vars + constraints: satisfying assignment <> control flow

Clock if (b1) {
assume X == 0 && c < 5; ]

@&&C<5){]_[x:=x+1;

X + 1; }

if (b2) {
—[assume I(x == 0) || !(c < 5)3]
cC := 0;
} Constraints:

e bl xor b2

15




Example - operation transformation

Boolean vars + constraints: satisfying assignment <> control flow

. Data Clock
if (bl) {
assume X == 0 && ¢ < 5;
i'F(X==@&&C<5){ X 1= X + 1;
X 1= X + 1; }
Data Clock
} else { if (b2) {
C :=0; assume !(x == 0) || !(c < 5);
} cC := 0;
} Constraints:

e bl xor b2

16




Example - operation transformation

Boolean vars + constraints: satisfying assignment <> control flow

if (bl) {
assume X == © && C < 5; |mmmm |3SSUmMe x == 8;
if (x == 0 & c < 5) { [x =X ¥ 1, ) [assume c < 5; ]
X 1= X + 1; }
} else { if (b2) {
C = 0; assume !(x == 0) || !(c < 5);
} cC := 0;
} Constraints:

e bl xor b2

16




Example - operation transformation

Boolean vars + con

straints: satisfying assignment «» control flow

if (b1l) { .
—_ : assume X == 0;
if (x == 0 & c < 5) { [;a(s_j,:m)e( i i: 0 8% ¢ <5 ]ﬂ[assume c < 5; ]
X 1= X + 1; }
} else { if (b2) {
C :=0; [assuﬁe I(x == 0) || !(c < 5);]
} C := 0,
/ Constraints:
(choice { ) * bl xor b2
assume !(x == 0);
} or {

assume !(c < 5);

\J

J
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Example - operation transformation

Boolean vars + constraints: satisfying assignment <> control flow

if (b1) {
[assume x == @ && c < 5; | [assume X == @3]
if (x == 0 & c < 5) { X = X ¥ 1. assume c < 5;
X 1= X + 1; }
} else { if (b2) {
C :=0; [assume !(x == @) || !(c < 5);]
} ll”yc = 0,
Constraints:
if (b3 N,
(choice { A ' (asiurﬁe I (x == 0); b1 xor b2
assume !(x == 0); }
}oor | P if (ba) {
assume !(c < 5); assume !(c < 5);
\J J \J /
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Example - operation transformation

Boolean vars + constraints: satisfying assignment <> control flow

if (bl) {
[assume x == @ && c < 5; | [assume X == @3]
if (x == 0 & c < 5) { X = X ¥ 1. assume c < 5;
X 1= X + 1; }
} else { if (b2) {
C :=0; [assume !(x == @) || !(c < 5);]
} ll”yc = 0,
Constraints:
 choi ) (if (b3) { - bl xor b2
choice { assume !(x == 0);
assume !(x == 0); } e b2 =
}oor { —) if (b4) { (—=b3Ab4)v(b3A—b4)
assume !(c < 5); assume !(c < 5);
\J J \J /
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Example - operation transformation

Boolean vars + constraints: satisfying assignment <> control flow

if (b1) {
[assume x == 0 && c < 5; | assume x == 0;
if (x == 0 & c < 5) { X = X ¥ 1. assume c < 5;
X 1= X + 1; }
} else { if (b2) {
C = 0; [assume !(x == @) || !(c < 5);]
} ll”yc = 0,
Constraints:
(i N
(choice { R 1 (:iiurﬁe (x == 0);| bl xor b2
assume !(x == 0); } ' ’ c b2 =
}oor { —) if (b4) { (—=b3Ab4)v(b3A—b4)
assume !(c < 5); assume !(c < 5); e —b2 = —b3

: f fiera



Example - operation transformation

Boolean vars + constraints: satisfying assignment <> control flow

if (bl) {
. assume X == 0;
if (x == 0 & c < 5) { assume c < 5;
X =X + 1; X 1= X + 13
} else { }
C = 0; if (b2) {
} if (b3) {
assume !(x == 0); Constraints:
} e bl xor b2
if (b4) { e b2 —
assume !(c < 5);
} (—b3Ab4)v(b3Ar—b4)
c := 0; * —b2 = —b3

17 f ftsrg.



Example - control flow with an SMT solver

Boolean vars + constraints: satisfying assignment <> control flow

if (x == 0 & c < 5) {
X 1= X + 1;

} else
c :

n ~ 1l

9;
}

bl = false
if (b2) { b2 = true
if (b3) { b3 = true
assume !(x == 0);
}
b4d = false
C := 0;

18

Constraints;

bl xor b2

b2 =
(—=b3Ab4)v(b3A—b4)
—b2 = —b3

—b2 = —b4



Example - control flow with an SMT solver

Boolean vars + constraints: satisfying assignment <> control flow

bl = false
if (x == 0 & c < 5) {
X 1= X + 1;
} else {
C = 0; if (b2) { b2 = true
h if (b3) { b3 = true
assume !(x == 0);
}
b4 = false
assume !(x ==
cC := 0;
cC := 0;

18

Constraints;

bl xor b2

b2 =
(—=b3Ab4)v(b3A—b4)
—b2 = —b3

—b2 = —b4



Example - control flow with an SMT solver

Boolean vars + constraints: satisfying assignment <> control flow

if (x == 0 & c < 5) {
X 1= X + 1;

} else
C :

n ~ 1l

0;
}

assume X

assume cC
X = X +

assume !(x == 0);
cC := 0;

assume !(c < 5);
cC := 0;

bl = false
if (b2) { b2 = true
if (b3) { b3 = true
assume !(x == 0);
}
b4d = false
C := 0;

18

Constraints;

bl xor b2

b2 =
(—=b3Ab4)v(b3A—b4)
—b2 = —b3

—b2 = —b4



Preliminary evaluation of the approaches

« Implemented in the Theta open source verification framework

« Two TXSTS models from Gamma engineering models:
- Example model demonstrating the capabilities of Gamma: crossroad
- Industrial case study: model of a safety-critical railway protocol

30 reachability properties, analyzed in two ways:

- Reachability of a given state
- Timed reachability: reachability of given state under a given time limit

19 f ftsrg.



Preliminary evaluation of the approaches

« 3 CPU cores, time limit of 20 minutes, memory limit of 15 GB

 Best configurations of both approaches compared:
number of verified properties, with mean CPU time

Verified properties with time limit of 20 minutes

Approach : —
Reachability Timed reachability
. . 30/30 (100%) 12/30 (40%)
Time = data transformation 748 s 296 <
Combined abstraction 30/30 (100%) 18/30 (60%)
with control flow splitting 11.09 s 40.99 s

* Reachability: same success rate, time->data transf. is faster
* Timed reachability: control flow splitting is more successful

20
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