Alpine Verification Meeting 2024

Abstraction-based model checking
for real-time software-intensive
system modelis

Dora Cziborova

ﬂsrg Critical Systems

FY Yo Research Group

Model checking

Requirement System

Formalized

requirement

Model checker

\ B
O ®

Model checking

Reachability | ‘

Formalized Formal
requirement model

Requirement

.4

\ B
© ®

Model checking - system models

Requirement

Reachability |

Formalized
requirement

Formal
model

Model checker

 Focus: real-time software-
intensive systems

 State-based representation,
e.g. statecharts

(J)COID Signaller

o TargetReleaseTimerNotRunning
entry / raise 0.COID : "PASSIVE" ‘

TargetReleaseTimerNotRunningRegion

Itoggle | Transient :
% entry / RS_COID = "oFF" * @
ot r— T.timeout} I_FT. i
entry / RS_COID = "OFF";]
offCount++ 1
Itogagle / toggleC it
& geaed e e [valueof(1FT.p) =="0"] default
T.timeout I_FT.p [valueof(I_FT.p) =="0"]]
TimerNotRunning) Invalid
LGRS, LFTf[entry / RS_COID = "OFF entry / RS_COID = "NERV1
valueof(I_CRf) = "1" || '] . T
valueof(I_FT.f) 1="1"]/
released = true I_FT.p [valueof(I_FT.p) !="0"]
I_CRf, I_FTf[ICRf, LFTF[|
valueof(I_CR.f) = ""1" || valueof(I_CRf) = "1" B&
valueof(I_FT.f) !, "1 valueof(I_FT.f) #="1"]
Release TargetReleaseTimerRunning
entry / raise 0.COID : "ACTIVE"; *¥ > 21 entry / raise O.COID : "ACTIVE";
oM T.timeout, I_CR.f, I_FT.f[M ONs = !
& RS_COID ON] valueof(i_CR.f) == "1" 88 |_ RS_COID ON"; timerSet = true

valueof(I_FT.f) =="1"]

Model checking - formal models

Requirement

* Intermediate formalisms: \
- High-level language

Reachability | ‘

Formalized Formal constructs
requirement model - More expressive than
‘ low-level formal models
« Easier mapping from

’ ‘ « The XSTS formalism - eXtended
@ @ \Symbolic Transition System /
4 f ftsrg.

Model checking - abstraction

state spg

Requirement

o « # of data variables
Reachability | ‘ . Continuous time explosion
Formalized Formal « Abstraction
requirement model . State space: ¢
‘ ‘ abstract
reachability
Model checker graph

(ARG) e

Y/

Steps to verify timed software-intensive models

. Anintermediate formalism is required
* Existing formalism: timed automata
« Extending the XSTS formalism by timing

Il. Supporting the verification of timed XSTS models
 Usual challenges of timed verification
 Challenges specific to the timed XSTS formalism

The XSTS formalism

Simple statechart model XSTS representation
type State : {Q}

ctrl var state : State = Q
var x : integer = 0

var y : integer = 0
a ———>[éii;;;)/_ trans {

if (state == Q) {
choice {
havoc X;

+oor {
y = X + 1;
}

XSTS language constructs

XSTS language constructs

assume y > X;

XSTS language constructs

m

assume y > X; y = X + 1;

XSTS language constructs

m

assume y > X; y = X + 1; havoc X;

Non-deterministic

assignment

XSTS language constructs

m

assume y > X; y = X + 1; havoc X;

Non-deterministic

assignment

Conditional
operation

if (x > 9) {

} else {

¥

XSTS language constructs

m

Non-deterministic

assignment

assume y > X; havoc X;
Conditional Non-deterministic
operation operation

if (x > 90) { choice {

} else { } or {

} }OP.%.

XSTS language constructs

m

Non-deterministic

assignment

assume y > X; havoc X;
Conditional Non-deterministic
Counting loop
operation operation
if (x > 90) { choice { for 1 from © to x do {
} else { } or { }

} }OP.%.

The TXSTS formalism - Timed XSTS

« XSTS extended by clock variables and clock operations

The TXSTS formalism - Timed XSTS

« XSTS extended by clock variables and clock operations

Clock set / reset

The TXSTS formalism - Timed XSTS

« XSTS extended by clock variables and clock operations

Clock set / reset Clock constraints

cC := 0O; assume cl - c2 > 9;

500; if (c > 500 || ..) ..

c .

The TXSTS formalism - Timed XSTS

« XSTS extended by clock variables and clock operations

Clock set / reset Clock constraints Increment all clocks

cC := 0O; assume cl - c2 > 9;

__delay;
500; if (c > 500 || ..) ..

c .

Verification approaches for TXSTS models

High-level

MlEfp[plg o formal model

Engineering intermediate

model formalism TXSTS

Verification approaches for TXSTS models

High-level

: : Mapping to
Engineering intermediate formal model

model formalism TXSTS

High-level
formal model Time = data

XSTS transform.

10

Verification approaches for TXSTS models

High-level

: : Mapping to
Engineering intermediate formal model

model formalism TXSTS

High-level
formal model Time = data

XSTS transform.

Abstraction
algorithms

10

Verification approaches for TXSTS models

High-level

: : Mapping to
Engineering intermediate formal model

model formalism TXSTS

High-level
formal model Time = data

XSTS transform.

Abstraction Abstract
algorithms data domain

10

Verification approaches for TXSTS models

High-level

: : Mapping to
Engineering intermediate formal model

model formalism TXSTS

High-level
formal model Time = data

XSTS transform.

Abstraction Abstract
algorithms data domain

Result of
verification

10

Verification approaches for TXSTS models

High-level

: : Mapping to
Engineering intermediate formal model

model formalism TXSTS

High-level
formal model Time = data

XSTS transform.

Abstraction Abstract

\YETe]ellg
P algorithms data domain

Result of
verification

10

Verification approaches for TXSTS models

High-level

: : Mapping to
Engineering intermediate formal model

model formalism TXSTS

High-level .
. Modified
formal model Time > data combined verification

XSTS ORISR algorithm

Abstraction Abstract

\YETe]ellg
P algorithms data domain

Result of
verification

10

Verification approaches for TXSTS models

High-level

: : Mapping to
Engineering intermediate formal model

model formalism TXSTS

High-level .
. Modified
formal model Time > data combined verification

XSTS ORISR algorithm

Abstraction Abstract

\YETe]ellg
P algorithms data domain

Result of
verification

10

Verification approaches for TXSTS models

High-level

: : Mapping to
Engineering intermediate formal model

model formalism TXSTS

High-level .
. Modified
formal model Time > data combined verification

XSTS ORISR algorithm

Abstraction Abstract Abstract time

\YETe]ellg
PRI algorithms data domain domain

Result of
verification

; f fiera

Verification approaches for TXSTS models

High-level

: : Mapping to
Engineering intermediate formal model

model formalism TXSTS

High-level .
. Modified
formal model Time > data combined verification

XSTS ORISR algorithm

Abstraction Abstract Abstract time

\YETe]ellg
PRI algorithms data domain domain

Result of
verification

10

1st approach: transformation of TXSTS to XSTS

* Clocks to rational variables
* Clock operations to data operations

@variable] &tivariable]

cl := 0; ‘ cl := 0;

1st approach: transformation of TXSTS to XSTS

* Clocks to rational variables
* Clock operations to data operations

_d is nondeterministic
and nonnegative

@variable] &tivariable] havoc d;
assume _d >= 0;

cl:=0; WP cl:-o; _delay; W ;..],

C2 := Cc2 +
Advance of time]

_d;
_d;

11

1st approach: transformation of TXSTS to XSTS

* Clocks to rational variables
* Clock operations to data operations

_d is nondeterministic
and nonnegative

@variable] &tivariable] havoc d;
assume _d >= 0;

cl:=0; WP cl:-o; _delay; W ;..],

C2 := Cc2 +
Advance of time]

« Existing algorithms can be used without modification

_d;
_d;

« Efficient time abstraction techniques cannot be used

11

2"d approach: verification of TXSTS models

* Existing abstraction-based techniques: lazy abstraction, CEGAR

* Building on combined abstraction
- Lazy abstraction for timing, CEGAR for data

2"d approach: verification of TXSTS models

* Existing abstraction-based techniques: lazy abstraction, CEGAR

* Building on combined abstraction
- Lazy abstraction for timing, CEGAR for data

)
Lazy

Abstractor

_b_uud.@

12

2"d approach: verification of TXSTS models

* Existing abstraction-based techniques: lazy abstraction, CEGAR

* Building on combined abstraction
- Lazy abstraction for timing, CEGAR for data

Initial data Refined data
precision precision
h 4
'\

Lazy s
Abstractor

Initial

Abstractor SIEEEEn

: 1
Abstraction R Lazy Time WY Eager Data Refiner Refined
- == Abstractor il Abstractor precision
- I ol | Eager Data
. . I prun Refiner
Refinement Lia?{fipg:e | = Abstractor Refiner
|

Abstract
counterexample

\. J
é Abstract
counterexample

12

2"d approach: verification of TXSTS models

* Existing abstraction-based techniques: lazy abstraction, CEGAR

* Building on combined abstraction
- Lazy abstraction for timing, CEGAR for data

Existing algorithms presume that the results of operations
can be computed individually for timing and data

13

2"d approach: verification of TXSTS models

* Existing abstraction-based techniques: lazy abstraction, CEGAR

* Building on combined abstraction
- Lazy abstraction for timing, CEGAR for data

Existing algorithms presume that the results of operations
can be computed individually for timing and data

A problematic example, with data variable x and clock variable c

if ((x == 0 && ¢ > 500) || (x == 1 && ¢ < 400))
{ ...}

13

2"d approach: verification of TXSTS models

* Existing abstraction-based techniques: lazy abstraction, CEGAR

* Building on combined abstraction
- Lazy abstraction for timing, CEGAR for data

Existing algorithms presume that the results of operations
can be computed individually for timing and data

A problematic example, with data variable x and clock variable c

if ((x == 0 && ¢ > 500) || (x == 1 && ¢ < 400))
{ ...}

« Solution: control flow splitting

13

Control flow splitting

e

‘(

r

\

Transformed Constraints
operation over Bool vars

.

J

_

Transformation:

and constraints on these variables

~

introducing new Boolean variables,

N

Control flow splitting
e

‘(

Transformation:

~

introducing new Boolean variables,

Transformed Constraints
operation over Bool vars

14

_

and constraints on these variables

Control
flow

Satisfying
assignment

N

Control flow splitting

f Transformation: A

‘(introducing new Boolean variables,
and constraints on these variables

-
Transformed Constraints . .

over Bool vars Salesfylng Control

Q y assignment flow

<(All-SAT])
Variable problem J

assignments

Control flow splitting

f Transformation: A

introducing new Boolean variables,
and constraints on these variables

Transformed Constraints Satisfyi Control
operation over Bool vars a.lsfylng ontro

assignment flow
‘ All-SAT |)

Varlabl problem J
assignments N\

Independent timing and data,
existing methods can be used
for verification

Set of final operatlons

J

Example - operation transformation

Boolean vars + constraints: satisfying assignment <> control flow

Data Clock

if (x == 0 & c < 5) {
X 1= X + 1;

} else {
cC := 0;

}

Example - operation transformation

Boolean vars + constraints: satisfying assignment <> control flow

Clock if (b1) {
assume X == 0 && c < 5;]

@&&C<5){]_[x:=x+1;

X + 1; }

9;

15

Example - operation transformation

Boolean vars + constraints: satisfying assignment <> control flow

Clock if (b1) {
assume X == 0 && ¢ < 5;
O & c < 5) {]_x:=x+1;
X + 1; }
if (b2) {

—[assume I(x ==0) []| !(c < 5)3]

cC := 0;
}

15

Example - operation transformation

Boolean vars + constraints: satisfying assignment <> control flow

Clock if (b1) {
assume X == 0 && c < 5;]

@&&C<5){]_[x:=x+1;

X + 1; }

if (b2) {
—[assume I(x == 0) || !(c < 5)3]
cC := 0;
} Constraints:

e bl xor b2

15

Example - operation transformation

Boolean vars + constraints: satisfying assignment <> control flow

. Data Clock
if (bl) {
assume X == 0 && ¢ < 5;
i'F(X==@&&C<5){ X 1= X + 1;
X 1= X + 1; }
Data Clock
} else { if (b2) {
C :=0; assume !(x == 0) || !(c < 5);
} cC := 0;
} Constraints:

e bl xor b2

16

Example - operation transformation

Boolean vars + constraints: satisfying assignment <> control flow

if (bl) {
assume X == © && C < 5; |mmmm |3SSUmMe x == 8;
if (x == 0 & c < 5) { [x =X ¥ 1,) [assume c < 5;]
X 1= X + 1; }
} else { if (b2) {
C = 0; assume !(x == 0) || !(c < 5);
} cC := 0;
} Constraints:

e bl xor b2

16

Example - operation transformation

Boolean vars + con

straints: satisfying assignment «» control flow

if (b1l) { .
—_ : assume X == 0;
if (x == 0 & c < 5) { [;a(s_j,:m)e(i i: 0 8% ¢ <5]ﬂ[assume c < 5;]
X 1= X + 1; }
} else { if (b2) {
C :=0; [assuﬁe I(x == 0) || !(c < 5);]
} C := 0,
/ Constraints:
(choice {) * bl xor b2
assume !(x == 0);
} or {

assume !(c < 5);

\J

J

16

Example - operation transformation

Boolean vars + constraints: satisfying assignment <> control flow

if (b1) {
[assume x == @ && c < 5; | [assume X == @3]
if (x == 0 & c < 5) { X = X ¥ 1. assume c < 5;
X 1= X + 1; }
} else { if (b2) {
C :=0; [assume !(x == @) || !(c < 5);]
} ll”yc = 0,
Constraints:
if (b3 N,
(choice { A ' (asiurﬁe I (x == 0); b1 xor b2
assume !(x == 0); }
}oor | P if (ba) {
assume !(c < 5); assume !(c < 5);
\J J \J /

16

Example - operation transformation

Boolean vars + constraints: satisfying assignment <> control flow

if (bl) {
[assume x == @ && c < 5; | [assume X == @3]
if (x == 0 & c < 5) { X = X ¥ 1. assume c < 5;
X 1= X + 1; }
} else { if (b2) {
C :=0; [assume !(x == @) || !(c < 5);]
} ll”yc = 0,
Constraints:
 choi) (if (b3) { - bl xor b2
choice { assume !(x == 0);
assume !(x == 0); } e b2 =
}oor { —) if (b4) { (—=b3Ab4)v(b3A—b4)
assume !(c < 5); assume !(c < 5);
\J J \J /

: f fiera

Example - operation transformation

Boolean vars + constraints: satisfying assignment <> control flow

if (b1) {
[assume x == 0 && c < 5; | assume x == 0;
if (x == 0 & c < 5) { X = X ¥ 1. assume c < 5;
X 1= X + 1; }
} else { if (b2) {
C = 0; [assume !(x == @) || !(c < 5);]
} ll”yc = 0,
Constraints:
(i N
(choice { R 1 (:iiurﬁe (x == 0);| bl xor b2
assume !(x == 0); } ' ’ c b2 =
}oor { —) if (b4) { (—=b3Ab4)v(b3A—b4)
assume !(c < 5); assume !(c < 5); e —b2 = —b3

: f fiera

Example - operation transformation

Boolean vars + constraints: satisfying assignment <> control flow

if (bl) {
. assume X == 0;
if (x == 0 & c < 5) { assume c < 5;
X =X + 1; X 1= X + 13
} else { }
C = 0; if (b2) {
} if (b3) {
assume !(x == 0); Constraints:
} e bl xor b2
if (b4) { e b2 —
assume !(c < 5);
} (—b3Ab4)v(b3Ar—b4)
c := 0; * —b2 = —b3

17 f ftsrg.

Example - control flow with an SMT solver

Boolean vars + constraints: satisfying assignment <> control flow

if (x == 0 & c < 5) {
X 1= X + 1;

} else
c :

n ~ 1l

9;
}

bl = false
if (b2) { b2 = true
if (b3) { b3 = true
assume !(x == 0);
}
b4d = false
C := 0;

18

Constraints;

bl xor b2

b2 =
(—=b3Ab4)v(b3A—b4)
—b2 = —b3

—b2 = —b4

Example - control flow with an SMT solver

Boolean vars + constraints: satisfying assignment <> control flow

bl = false
if (x == 0 & c < 5) {
X 1= X + 1;
} else {
C = 0; if (b2) { b2 = true
h if (b3) { b3 = true
assume !(x == 0);
}
b4 = false
assume !(x ==
cC := 0;
cC := 0;

18

Constraints;

bl xor b2

b2 =
(—=b3Ab4)v(b3A—b4)
—b2 = —b3

—b2 = —b4

Example - control flow with an SMT solver

Boolean vars + constraints: satisfying assignment <> control flow

if (x == 0 & c < 5) {
X 1= X + 1;

} else
C :

n ~ 1l

0;
}

assume X

assume cC
X = X +

assume !(x == 0);
cC := 0;

assume !(c < 5);
cC := 0;

bl = false
if (b2) { b2 = true
if (b3) { b3 = true
assume !(x == 0);
}
b4d = false
C := 0;

18

Constraints;

bl xor b2

b2 =
(—=b3Ab4)v(b3A—b4)
—b2 = —b3

—b2 = —b4

Preliminary evaluation of the approaches

« Implemented in the Theta open source verification framework

« Two TXSTS models from Gamma engineering models:
- Example model demonstrating the capabilities of Gamma: crossroad
- Industrial case study: model of a safety-critical railway protocol

30 reachability properties, analyzed in two ways:

- Reachability of a given state
- Timed reachability: reachability of given state under a given time limit

19 f ftsrg.

Preliminary evaluation of the approaches

« 3 CPU cores, time limit of 20 minutes, memory limit of 15 GB

 Best configurations of both approaches compared:
number of verified properties, with mean CPU time

Verified properties with time limit of 20 minutes

Approach : —
Reachability Timed reachability
. . 30/30 (100%) 12/30 (40%)
Time = data transformation 748 s 296 <
Combined abstraction 30/30 (100%) 18/30 (60%)
with control flow splitting 11.09 s 40.99 s

* Reachability: same success rate, time->data transf. is faster
* Timed reachability: control flow splitting is more successful

20

Refined data
precision

summary

Initial data
precision
h

H Igh-|EVE| Abstrlactor
formal model o | G | (e

, ER ARG

Eager Data
Sl Refiner

Lazy Time
Refiner

Abstract
counterexample

Modified
combined verification

algorithm
Control flow

splitting

Time = data
transformation

EXI Stl ng Transformed All-SAT
operation problem

abstraction algorithms =3
(no time abstraction) Variable

assignments

Result of
verification

Final operations

21

	Slide 1: Abstraction-based model checking for real-time software-intensive system models
	Slide 2: Model checking
	Slide 3: Model checking
	Slide 4: Model checking – system models
	Slide 5: Model checking – formal models
	Slide 6: Model checking – abstraction
	Slide 7: Steps to verify timed software-intensive models
	Slide 8: The XSTS formalism
	Slide 9: XSTS language constructs
	Slide 10: XSTS language constructs
	Slide 11: XSTS language constructs
	Slide 12: XSTS language constructs
	Slide 13: XSTS language constructs
	Slide 14: XSTS language constructs
	Slide 15: XSTS language constructs
	Slide 16: The TXSTS formalism – Timed XSTS
	Slide 17: The TXSTS formalism – Timed XSTS
	Slide 18: The TXSTS formalism – Timed XSTS
	Slide 19: The TXSTS formalism – Timed XSTS
	Slide 20: Verification approaches for TXSTS models
	Slide 21: Verification approaches for TXSTS models
	Slide 22: Verification approaches for TXSTS models
	Slide 23: Verification approaches for TXSTS models
	Slide 24: Verification approaches for TXSTS models
	Slide 25: Verification approaches for TXSTS models
	Slide 26: Verification approaches for TXSTS models
	Slide 27: Verification approaches for TXSTS models
	Slide 28: Verification approaches for TXSTS models
	Slide 29: Verification approaches for TXSTS models
	Slide 30: 1st approach: transformation of TXSTS to XSTS
	Slide 31: 1st approach: transformation of TXSTS to XSTS
	Slide 32: 1st approach: transformation of TXSTS to XSTS
	Slide 33: 2nd approach: verification of TXSTS models
	Slide 34: 2nd approach: verification of TXSTS models
	Slide 35: 2nd approach: verification of TXSTS models
	Slide 36: 2nd approach: verification of TXSTS models
	Slide 37: 2nd approach: verification of TXSTS models
	Slide 38: 2nd approach: verification of TXSTS models
	Slide 39: Control flow splitting
	Slide 40: Control flow splitting
	Slide 41: Control flow splitting
	Slide 42: Control flow splitting
	Slide 43: Example – operation transformation
	Slide 44: Example – operation transformation
	Slide 45: Example – operation transformation
	Slide 46: Example – operation transformation
	Slide 47: Example – operation transformation
	Slide 48: Example – operation transformation
	Slide 49: Example – operation transformation
	Slide 50: Example – operation transformation
	Slide 51: Example – operation transformation
	Slide 52: Example – operation transformation
	Slide 53: Example – operation transformation
	Slide 54: Example – control flow with an SMT solver
	Slide 55: Example – control flow with an SMT solver
	Slide 56: Example – control flow with an SMT solver
	Slide 57: Preliminary evaluation of the approaches
	Slide 58: Preliminary evaluation of the approaches
	Slide 59: Summary

