
Policies Grow on Trees:
Model Checking Families of MDPs*

Filip Macák

*See the paper: Andriushchenko R., Češka M., Junges S. and Macák F.: Policies Grow on

Trees: Model Checking Families of MDPs. (accepted to ATVA’24)

Motivation

Previous work: exploring families of discrete-time Markov chains (DTMCs)

• synthesis of discrete-time probabilistic programs

• synthesis of Markov decision process (MDP) controllers wrt. hyperproperties

• synthesis of finite-state controllers for POMDPs

The family can be viewed as a DTMC with controllable or uncontrollable parameters

• controllable choice of the strategy of the agent

• uncontrollable choice of the environment or the adversary strategy

1 / 24

Motivation

Often, we need to reason about controllable and uncontrollable choices

• planning in multiple controllable environments

• we don’t know the exact environment

Case study examples:

• dynamic power management of a request processing device

• parameters affect the device components and the client behavior

• virus attack on a computer network

• parameters affect network topology and node vulnerabilities

• agent navigating in a grid-like environment

• parameters affect the environment and the behavior of adversary agents

2 / 24

Markov decision processes recap

DTMC = discrete-time state transition system that evolves stochastically

• typical query: P(FT) ≥ 0.9 ≡ verify whether the probability P(FT) of reaching

the set T of target states is at least 90%

0

1

2 4

3
1/6

3/4
1/2

1/4

1/2

1/3

2/3

5/6

3 / 24

Markov decision processes recap

MDP = DTMC + nondeterministic actions

• (memoryless & deterministic) controller (scheduler, policy) σ : S → Act resolves

the nondeterminism

• MDP M + controller σ = DTMC Mσ

• typical query: maxσ P(M
σ |= FT) ≡ find controller σ that maximizes the

probability of reaching T

0

1

2

1/3

4

3

1/6

1

3/4 1/2
1

2/3

1/4 1/2

1/3
2/3

5/6

4 / 24

Family of MDPs

Family {Mi}i∈I of MDPs = MDP with parameters

• parameters affect MDP topology

• i ∈ I is a parameter assignment, |I| < ∞
• choice of parameter assignment i ∈ I
represents uncontrollable nondeterminism

(adversary, environment)

• choice of action α ∈ Act represents

controllable nondeterminism

goal

• parameters: OX = {2, 3, 4, 5}
and OY = {2, 3, 4}

5 / 24

Robustness problem

input: family {Mi}i∈I of MDPs

input: PCTL reachability property P(FT) ▷◁ λ

output: robust controller σ s.t. ∀i ∈ I : P(Mσ
i |= FT) ▷◁ λ

• requires non-memoryless controllers

• related to solving POMDPs

goal

6 / 24

Problem statement

input: family {Mi}i∈I of MDPs

input: PCTL reachability property P(FT) ▷◁ λ

output: for each parameter assignment i ∈ I a controller σi s.t. P
(
Mσi

i |= FT
)
▷◁ λ

(if such σi exists)

goal

7 / 24

Problem statement

Additional requirement: produce a decision tree of controllers

• nodes of the tree reason about a single parameter

• leaves of the tree (describing sub-families) contain controllers (or ∅)

• space-efficient, fast lookup, more understandable for engineers

goal

8 / 24

Naive approaches

One-by-one enumeration

• computationally-intensive

• produces a list of controllers

• unsuitable for large families

All-in-one abstraction + BDD encoding

• computationally- and memory-intensive

• produces a more compact decision tree

• export is not supported by existing tools

• not all problems can be efficiently encoded

9 / 24

Proposed solution

Algorithm 1 Policy tree synthesis
Input: familyM = {Mi}i∈I of MDPs, PCTL property φ

Output: policy tree forM wrt. φ

1: function buildTree(M, φ)

2: σ ← try to find a robust controller forM wrt. φ

3: if succeeded then

4: return LeafNode(M, σ)

5: try to prove that no Mi ∈M can satisfy φ

6: if succeeded then

7: return LeafNode(M,∅)

8: M′,M′′ ← split(M)

9: return InnerNode(M, buildTree(M′, φ), buildTree(M′′, φ))

• gist: given a family of MDPs, try to find a robust controller or try to prove that

no satisfying MDP exists, split the family if a conclusive result was not obtained
10 / 24

Proposed solution

Algorithm 1 Policy tree synthesis
Input: familyM = {Mi}i∈I of MDPs, PCTL property φ

Output: policy tree forM wrt. φ

1: function buildTree(M, φ)

2: σ ← try to find a robust controller forM wrt. φ

3: if succeeded then

4: return LeafNode(M, σ)

5: try to prove that no Mi ∈M can satisfy φ

6: if succeeded then

7: return LeafNode(M,∅)

8: M′,M′′ ← split(M)

9: return InnerNode(M, buildTree(M′, φ), buildTree(M′′, φ))

• gist: given a family of MDPs, try to find a robust controller or try to prove that

no satisfying MDP exists, split the family if a conclusive result was not obtained
10 / 24

Proposed solution

Algorithm 1 Policy tree synthesis
Input: familyM = {Mi}i∈I of MDPs, PCTL property φ

Output: policy tree forM wrt. φ

1: function buildTree(M, φ)

2: σ ← try to find a robust controller forM wrt. φ

3: if succeeded then

4: return LeafNode(M, σ)

5: try to prove that no Mi ∈M can satisfy φ

6: if succeeded then

7: return LeafNode(M,∅)

8: M′,M′′ ← split(M)

9: return InnerNode(M, buildTree(M′, φ), buildTree(M′′, φ))

How to find a robust controller?
10 / 24

Stochastic game

Stochastic game G = MDP with its states partitioned into Player 1 and Player 2 states

0

1

2

1/3

4

3

1/6

1

3/4 1/2
1

2/3

1/4 1/2

1/3
2/3

5/6

• controller is a pair σ = (σ1, σ2) of Player 1 & Player 2 controllers

• Player 1 maximizes, Player 2 minimizes the reachability probability:

max
σ1

min
σ2

P(Gσ1σ2 |= FT)

11 / 24

Stochastic game abstraction

• Player 1 picks an action, Player 2 picks a parameter assignment

i=1

2/3

i=1,3

1/2

1/2

...

...

1/3
i=2,3

i=2

the above is an over-approximation since Player 2 is too powerful:

• Player 2 can pick parameter assignments inconsistently
• consistent abstraction would mimic the all-in-one abstraction

• Player 2 acts second
• this order avoids the abstraction blow-up

12 / 24

Robust policy heuristic

• assume a family M of MDPs and a specification P(FT) ≥ 0.9

• construct game abstraction G(M)

• the following is a sufficient (but not necessary) condition for σ1 to be a robust

controller for M:

max
σ1

min
σ2

P(G(M)σ1σ2 |= FT) ≥ 0.9

• if the above condition does not hold and σ2 is consistent in its parameter

assignment, then this assignment is unsatisfiable

13 / 24

Proposed solution

Algorithm 1 Policy tree synthesis
Input: familyM = {Mi}i∈I of MDPs, PCTL property φ

Output: policy tree forM wrt. φ

1: function buildTree(M, φ)

2: σ ← try to find a robust controller forM wrt. φ

3: if succeeded then

4: return LeafNode(M, σ)

5: try to prove that no Mi ∈M can satisfy φ

6: if succeeded then

7: return LeafNode(M,∅)

8: M′,M′′ ← split(M)

9: return InnerNode(M, buildTree(M′, φ), buildTree(M′′, φ))

How to prove a family is unsatisfiable?

14 / 24

Proving unsatisfiability heuristic

• assume a family M of MDPs and a specification P(FT) ≥ 0.9

• the following is a sufficient (but not necessary) condition for no MDP in M being

satisfiable:

max
σ1

max
σ2

P(G(M)σ1σ2 |= FT)< 0.9

• such “game” abstraction is simply an MDP

• if the above condition does not hold and σ2 is consistent in its parameter

assignment, then this assignment is satisfiable

15 / 24

Proposed solution

Algorithm 1 Policy tree synthesis
Input: familyM = {Mi}i∈I of MDPs, PCTL property φ

Output: policy tree forM wrt. φ

1: function buildTree(M, φ)

2: σ ← try to find a robust controller forM wrt. φ

3: if succeeded then

4: return LeafNode(M, σ)

5: try to prove that no Mi ∈M can satisfy φ

6: if succeeded then

7: return LeafNode(M,∅)

8: M′,M′′ ← split(M)

9: return InnerNode(M, buildTree(M′, φ), buildTree(M′′, φ))

How to split a family?

16 / 24

Abstraction refinement

Abstraction refinement step: if neither of the tests was successful, we split family M
into smaller subfamilies based on the controller (σ1, σ2) for the game

abstraction G(M)

• if σ2 is not consistent i.e. in parameter X , we split wrt. X to disallow such an

inconsistency in the subfamilies

• if σ2 is consistent, representing some satisfiable assignment i , we try to separate i

(and other assignments in which σ2 is consistent) into a smaller subfamily

17 / 24

Example

goal

• parameters: OX = {2, 3, 4, 5} and

OY = {2, 3, 4}
• crashing = going into sink state

• specification: P(F goal) ≥ 0.99

18 / 24

Example

goal

?

18 / 24

Example

goal

?

18 / 24

Example

goal

?

18 / 24

Example

goal

?

18 / 24

Example

goal

18 / 24

Example

goal

18 / 24

Tree post processing

Three post-processing steps:

1. for each leaf siblings pair with policies σl and σr for subfamilies Ml and Mr ,

verify robustness of σl+r and σr+l . If one of them is robust, join the two leaves.

2. combine each pair of compatible policies

3. join all sibling leaves which are denoted by the same policy (or are unsat)

19 / 24

Decision tree example

20 / 24

Experimental results

model
model info our approach speedup wrt.

|SM| |M| SAT% P/SAT% time 1-by-1 all-in-1

dodge-2 2e5 3e4 100 0.1 122 8 1.1

dodge-3 2e5 9e7 100 <0.01 1445 †1764 MO

dpm-10-b 9e3 1e5 22 0.02 74 21 TO

obs-8-6 5e2 5e4 90 0.6 6 4 1.5

obs-10-6 8e2 3e6 98 <0.01 5 412 MO

obs-10-9 1e3 4e8 100 <0.01 259 †1661 MO

rov-1000 2e4 4e6 99 0.03 1402 †65 TO

uav-work 9e3 2e6 99 <0.01 113 55 TO

virus 2e3 7e4 83 0.9 50 0.8 TO

rocks-6-4 3e3 7e3 100 34 102 0.2 0.1
21 / 24

Experimental results

model
model info our approach speedup wrt.

|SM| |M| SAT% P/SAT% time 1-by-1 all-in-1

dodge-2 2e5 3e4 100 0.1 122 8 1.1

dodge-3 2e5 9e7 100 <0.01 1445 †1764 MO

dpm-10-b 9e3 1e5 22 0.02 74 21 TO

obs-8-6 5e2 5e4 90 0.6 6 4 1.5

obs-10-6 8e2 3e6 98 <0.01 5 412 MO

obs-10-9 1e3 4e8 100 <0.01 259 †1661 MO

rov-1000 2e4 4e6 99 0.03 1402 †65 TO

uav-work 9e3 2e6 99 <0.01 113 55 TO

virus 2e3 7e4 83 0.9 50 0.8 TO

rocks-6-4 3e3 7e3 100 34 102 0.2 0.1
21 / 24

Experimental results

model
model info our approach speedup wrt.

|SM| |M| SAT% P/SAT% time 1-by-1 all-in-1

dodge-2 2e5 3e4 100 0.1 122 8 1.1

dodge-3 2e5 9e7 100 <0.01 1445 †1764 MO

dpm-10-b 9e3 1e5 22 0.02 74 21 TO

obs-8-6 5e2 5e4 90 0.6 6 4 1.5

obs-10-6 8e2 3e6 98 <0.01 5 412 MO

obs-10-9 1e3 4e8 100 <0.01 259 †1661 MO

rov-1000 2e4 4e6 99 0.03 1402 †65 TO

uav-work 9e3 2e6 99 <0.01 113 55 TO

virus 2e3 7e4 83 0.9 50 0.8 TO

rocks-6-4 3e3 7e3 100 34 102 0.2 0.1
21 / 24

Main takeaways

Main contributions:

1. We contribute a scalable approach to policy synthesis for sets of MDPs

2. The key technique is a game-based abstraction with abstraction refinement

3. The resulting algorithm finds policies for millions of MDPs and provides a

compact representation of them

On MDP similarity

• Our approach works better on families where MDPs are similar

• However, there’s no good metric to determine how similar the MDPs are

• Even similar-looking MDPs can have vastly different winning policies

• We argue this approach is beneficial for the community

22 / 24

Code

The input format is an extended version of PRISM modelling language

• straightforward for people from the MDP verification community

• easy to iterate and change the MDP families

Artifact: https://doi.org/10.5281/zenodo.12569976

The presented approach and many more algorithms implemented in tool PAYNT

• PAYNT repository: https://github.com/randriu/synthesis

23 / 24

https://doi.org/10.5281/zenodo.12569976
https://github.com/randriu/synthesis

Conclusion

Future work:

• Investigate the robustness problem further

• Incorporate the compact representation of policies (e.g. as decision trees)

• Extend the framework to families of POMDPs

Thank you for attention!

24 / 24

