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Motivation

▶ Finite-State Automata (FSA): Regular languages over finite alphabets

▶ What if the alphabet is infinite? (E.g., arrays using real numbers...)

▶ Lots and lots of extensions of FSA for infinite alphabets

▶ In this presentation: Quick, example-driven introduction to Parametrized
Automata (PA) 1, especially determinism and complementation

▶ Not in this presentation: Implementation

1See Parametrized Automata over Infinite Alphabets: Properties and Complementation, Franziska
Alber, Master thesis, 2024 (coming soon!)
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Finite-State Automata

An FSA A = (D,Q, q0, δ,F ) is a tuple of:

▶ D: finite, non-empty alphabet

▶ Q: finite set of states

▶ q0 ∈ Q: initial state

▶ δ ⊆ Q × D × Q: transition relation

▶ F ⊆ Q: set of accepting states

Alphabet: D = {a, b}, examples of words
over D: ab, babbba, . . .

q0start q1

a, b

b
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q0start q1

a, b

b

(a) A1

q0start q1

a

b

b
a

(b) A2
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Determinism and Complementation

q0start q1

a, b

b

(a) A1

q0start q1

a

b

b
a

(b) A2

Determinism:

▶ transition function

▶ exactly one possible path/run for every word

▶ in every state, exactly one exiting transition for every letter

Determinism leads to easy complementation!
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Towards Infinite Alphabets

▶ Register Automata/Finite-Memory Automata [19]

▶ Symbolic Automata [12]

▶ Variable Automata [16]

▶ Parametrized Automata [18]

▶ Symbolic Register Automata [10]

▶ Register Set Automata [17]

▶ Extended Symbolic Finite Automata [11]

▶ Fresh-Variable Automata [3]

▶ Guarded Variable Automata over Infinite Alphabets [4]

▶ Register Automata with Linear Arithmetic [9]
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Second Slide to Prove a Point

▶ Single-Use Register Automata [8]

▶ Pebble Automata [21]

▶ Usage Automata [2]

▶ Parametric Semilinear Data Automata [15]

▶ Parikh Automata [20]

▶ Timed Automata [14]

▶ Deterministic Memory Automata over Ordered Data[5]

▶ Data Automata and Two-Variable First-Order Logic [6]

▶ Alternating 1-Register Automata and LTL with Freeze Quantifiers [13]

▶ Nominal Automata [7]

▶ Streaming Data-String Acceptors [1]
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Meet the Parents

Symbolic Automata use logical formulas
(“guards”) instead of letters. Properties
are similar to FSA.

q0start q1

x%2 = 0

x > 5

⊤

Figure: A symbolic automaton.

Variable Automata compare input letters to
non-reassignable variables y1, y2, . . . , yk .
The symbol z represents all letters not
assigned to a variable.

q0start q1 q2

z

y1

z

y1

z , y1

Figure: A variable automaton.
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Meet the Parents

Symbolic Automata use logical formulas
(“guards”) instead of letters. Properties
are similar to FSA.

q0start q1

x%2 = 0

x > 5

⊤

Figure: A symbolic automaton.

Variable Automata compare input letters to
non-reassignable variables y1, y2, . . . , yk .
The symbol z represents all letters not
assigned to a variable.

q0start q1 q2

z

3

z

3

z , 3

µ(y1) = 3
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Parametrized Automata
A PA A = (M,Q, q0, δ,F ) is a tuple of:

▶ M = (D, I ): structure where D is an infinite alphabet

▶ Q: finite set of states

▶ q0 ∈ Q: initial state

▶ δ ⊆ Q × Φ× Q: transition relation (Φ: set of formulas)

▶ F ⊆ Q: set of accepting states

x : placeholder for current letter, y : parameter

q0start q1 q2

⊤

x = y x < y

⊤

Figure: P1 accepts all unsorted words and cannot be complemented.

Parametrized Automata are not closed under complementation! (Proof at the end)
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Determinism per Assignment

▶ “Local” approach: Exactly one possible exiting transition for every state, letter
and parameter assignment

▶ (+) Always works: Algorithms for Symbolic Automata are applicable

▶ (−) Does not imply that every word can take exactly one path ⇒ not sufficient
for complementation!

q0start q1 q2

x ̸= y
x = y

x < y

x > y

x = y ⊤

Figure: P ′
1: equivalent to P1 and deterministic per

assignment

Example: Word w = (3, 2)

assignment term. state

µ(y) = 3 q2
µ(y) = 0 q0
µ(y) = 2 q1
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Strongly Deterministic Parametrized Automata (SDPA)

▶ “Global” approach: Exactly one possible path for every word

▶ (+) Easy complementation

▶ (−) Not every PA is equivalent to an SDPA (not even every complementable PA!)

q0start q1 q2
x = y

x < y

x ≥ y

⊤

(a) Strongly deterministic

q0start

q2

q1
x = y

x ̸= y

x < y

x ≥ y

⊤

(b) Deterministic per assignment

Figure: Two different representations for the language of words in which the first letter is
strictly largest.
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Relations between the different subclasses of parametrized automata

Strongly Deterministic

Parametrized Automata

Complementable

Parametrized Automata

Parametrized Automata

(=̂ deterministic per assignment)
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Complementable PA ⊊ PA

q0start q1 q2

⊤

x = y x < y

⊤

Figure: P1 identifying all unsorted words.

There is no PA identifying the complement language of L(P1):

▶ Complement PA of P1 has to identify all sorted words (letters in ascending order)

▶ Assume Pc
1 exists, n states ⇒ the word (1, 2, . . . 3n) traverses some state thrice

⇒ loop in section (i , i + 1, . . . , i + k)

▶ Word (1, . . . , i + k , i , . . . , n) falsely accepted.
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SDPA ⊊ Complementable PA

q0start

y ≤ x ≤ y + 1

(a) A3

q0start q1 q2

⊤

x = y1

⊤

|x − y1| > 1

⊤

(b) Ac
3

There is no SDPA A equivalent to Ac
3:

▶ In SDPA, the paths of prefixes of words are predetermined

▶ Consider sequence of words (1, 12 , 2), (1,
1
2 ,

1
3 , 1 +

1
2), . . .

▶ Prove all paths of prefixes (1, 12 , . . . ,
1
i ) have to terminate in distinct states

▶ Number of states unbounded ⇒ A does not exist.
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