Contract-LIB

A Common Interchange Format
for Software System Specification

Presentation at the Alpine Verification Meeting 2024, Freiburg im Breisgau
Draft: https://www.sosy-lab.org/people/ernst/

Code: https://github.com/gernst/contract-lib

To appear at SpecifyThis @ ISoLA 2024

Wolfram Pfeifer
Mattias Ulbrich

4]}

Karlsruhe Institute of Technology

Gidon Ernst

https://www.sosy-lab.org/people/ernst/
https://github.com/gernst/contract-lib

Build-a-Deductive-Verifier Checklist 2/17

* @ @

V3

have a new cool idea
target programming language
foundational methodology

mathematical specification language

SN NSNS

(think: a tool like Dafny)

Build-a-Deductive-Verifier Checklist 3/17

have a new cool idea

target programming language

* @ @

foundational methodology

SN NSNS

v mathematical specification language

t have fun verifying programs

Build-a-Deductive-Verifier Checklist 4/17

? have a new cool idea v

P target programming language v/

* foundational methodology 4
v mathematical specification language 4 N 2.
I support the standard library g =
¢ share verified code / specs across tools ... !? - iqé:
¢ share proof artifacts across tools o 12 5 E
connect proofs across languages 'y é 0;?

HOW STANDARDS PROLFERATE:

(seE: A/C CHARGERS, CHARACTER ENCODINGS, INSTANT MESSAGING, ETC)

SITUATION:

THERE ARE
|4 COMPETING
STANDARDS.

17! RiDICULOLS!

WE NEED To DEVELOP

ONE UNIVERSAL STANDARD

THAT COVERS EVERYONES
VSE CASES. YERH!

OOON:

SITUATION:

THERE ARE
15 COMPETING
STANDPRDS.

Tool Interoperability 6/17

e On the wish-list since forever le.g. Rushby 2005]
* Conflict
— innovation yay cool research! [Separation Logic, ...]

— maturity yay practical impact! [De Gouw+ 2015]
* Landscape of deductive verifiers

— @ tool lock-in, reinventing the wheel

- ¢ standards are rather complex [JML, ACSL]

key challenge: find simple common ground

First Attempt: ArrayList in Dafny 7/17

class ArraylList<T> {
var data: array<T>
var length: int

method add(last: T)
ensures length = old(length) + 1
ensures datal[old(length)] = last
ensures forall i :: @ < i < old(length) =
datal[i] = old(datali])

First Attempt: ArrayList in Dafny 8/17

class ArraylList<T> {
var data: array<T>
var length: int

bad abstraction

* leak implementation details
* leak language semantics

* leak verification details

method add(last: T)
ensures length = old(length) + 1
ensures datal[old(length)] = last

ensures forall i :: @ < i < old(length) =
data[i] = old(datal[i])

Software Verification (Principled Approach) 9/17

implementation specification

laws of
programming

o a0 v > a0 E» @ @ @ @ @ &

'—-----~

N\

data structures data abstractions

pointers etc, ... (sequences, sets,
maps, trees, ...)

Second Attempt: ArrayList in Dafny 10/17

class ArraylList<T> {

var data: array<T> * behavior: easy & intuitive

* implementation as well as
abstraction mechanism is
private to the class

var length: int
ghost var content: seq<T>

method add(last: T)
ensures content = old(content) + [last]
requires valid()
ensures valid()

predicate valid() { ... }
}

Key Observation 11/17

complex & difficult () well-understood
innovation happens here stable across tools

laws of
programming

’—-----~
o a0 v > a0 E» @ @ @ @ @ &

N\

e e oo ---- s’
data structures data abstractions
pointers etc, ... (sequences, sets,

maps, trees, ...)

Lesson from SMT-LIB etc...:
Have a clear &
well-defined scope

12/17

() well-understood
stable across tools

K_H

£\

data abstractions

(sequences, sets,
maps, trees, ...)

Contract-LIB: Contribution 13/17

* identify simple common ground
— behaviors of well-encapsulated stateful components / OOP

— be independent of language, method, tool

— but be universally compatible (... maybe not with Rust)

Contract-LIB: Contribution 14/17

* identify simple common ground
— behaviors of well-encapsulated stateful components / OOP

— be independent of language, method, tool

— but be universally compatible (... maybe not with Rust)

* define easy-to-adopt technical realization: SMT-LIB with

- old, par, standardize extra theories (Map, Seq, Set)
- declare-abstractions data model of abstract state

- define-contract behavioral model for methods

ArrayList Interface in Contract-LIB 15/17

(declare-abstractions
((ArraylList 1)) \/ I'm WO robot J
((par (T)
((Arraylist

(ArrayList.content (Seq T)))))

(define-contract
ArraylList.add
(par (T) ((this (inout ArraylList)) (last (in T)))
((true
(= (ArrayList.content this)
(seq.+ (old (ArraylList.content this))
(seq.unit last))))))

Summary & Outlook 16/17

Contract-LIB: define and formalize common ground of specifications
across deductive verification tools

* Ongoing: Tool-chain (Java) + Adoption Guidelines
e Qutlook: integrate with tools & gather experience
— share specs / verified components across tools

— develop a common repository of case-studies and standard libraries

¥ Acknowledgement: Thanks to all participants in the intense
discussions at Dagstuhl and Lorentz seminars

Integration Workflow 17/17

Contract-LIB VerCors, KeY, Dafny, Viper, Why?3, ...
specification p A -
data types
user-defined multiway Language- & tool-
functions import / export specific program

abstractions annotations

conftracts

o fully precise
behavioral model

« template for coupling

& framing invariants

Language-specific

e signatures

of operations

