
1/15

Invariant slicing by accessibility

Ilgiz Mustafin

Constructor Institute of Technology, Schaffhausen, Switzerland

16th Alpine Verification Meeting, September 2024



2/15

Full bicycle

Frame
top tube

down tube
seat tube
seat stay

chain stay

rear brakes
cogset

rear derailleur

front derailleur
chain

chain rings

Saddle area
saddle
seat post

pedal
crank arm

Front set
handlebar grip
head tube
shock absorber
front brakes
fork

Wheel
spokes
hub
rim
tire
valve

Al2, CC BY 3.0 https://creativecommons.org/licenses/by/3.0, via Wikimedia Commons



3/15

Model of a bicycle

Bicycle:
▶ Front wheel

▶ Back wheel

▶ Valid (or usable) when the wheels are attached



3/15

Model of a bicycle

Bicycle:
▶ Front wheel

▶ Back wheel

▶ Valid (or usable) when the wheels are attached



4/15

Code of a bicycle

class
BICYCLE

feature

front_wheel: detachable WHEEL -- detachable means ‘possibly Void’
back_wheel: detachable WHEEL

-- Valid when:

front_wheel ̸=Void
back_wheel ̸=Void

end



4/15

Code of a bicycle

class
BICYCLE

feature

front_wheel: detachable WHEEL -- detachable means ‘possibly Void’
back_wheel: detachable WHEEL

-- Valid when:

front_wheel ̸=Void
back_wheel ̸=Void

end



4/15

Code of a bicycle

class
BICYCLE

feature

front_wheel: detachable WHEEL -- detachable means ‘possibly Void’

back_wheel: detachable WHEEL

-- Valid when:

front_wheel ̸=Void
back_wheel ̸=Void

end



4/15

Code of a bicycle

class
BICYCLE

feature

front_wheel: detachable WHEEL -- detachable means ‘possibly Void’
back_wheel: detachable WHEEL

-- Valid when:

front_wheel ̸=Void
back_wheel ̸=Void

end



4/15

Code of a bicycle

class
BICYCLE

feature

front_wheel: detachable WHEEL -- detachable means ‘possibly Void’
back_wheel: detachable WHEEL

-- Valid when:

front_wheel ̸=Void
back_wheel ̸=Void

end



4/15

Code of a bicycle

class
BICYCLE

feature

front_wheel: detachable WHEEL -- detachable means ‘possibly Void’
back_wheel: detachable WHEEL

-- Valid when:

front_wheel ̸=Void

back_wheel ̸=Void
end



4/15

Code of a bicycle

class
BICYCLE

feature

front_wheel: detachable WHEEL -- detachable means ‘possibly Void’
back_wheel: detachable WHEEL

-- Valid when:

front_wheel ̸=Void
back_wheel ̸=Void

end



5/15

Code of a bicycle

class
BICYCLE

feature

front_wheel: detachable WHEEL -- detachable means ‘possibly Void’
back_wheel: detachable WHEEL

invariant -- Valid when:

front_wheel ̸=Void
back_wheel ̸=Void

end



6/15

What is a class invariant?

Class invariant is the validity condition for every object of this class



7/15

Code of bicycle’s operations

An operation that can be done on a bicycle is to change its front wheel:

class
BICYCLE

feature

change_front_wheel (new_wheel: WHEEL)
do -- Invariant holds
remove_front_wheel
-- now has no front wheel. Invariant does not hold
install_front_wheel (new_wheel)
-- now has a front wheel

end -- Invariant holds

end



8/15

Dynamic and static

What to do with invariants?

▶ Check invariants during the program execution

▶ Verify (prove) statically that invariants hold at all points where they must hold

Our research is focused on the static verification aspect.



9/15

Example: Marriage

When invariant depends on other objects, things get more complicated:

class
PERSON

feature
spouse: detachable PERSON
is_married: BOOLEAN
marry (other: PERSON)
do
set_married ; other.set_married
set_spouse (other) ; other.set_spouse (Current)

end
divorce
do
spouse := Void
is_married := False

end
invariant
married_iff_has_spouse: is_married =(spouse ̸=Void)
reciprocal: is_married implies (spouse.spouse =Current)

end



10/15

Example: Reference leak

We can break the invariant of an object even without touching it:

Alice.marry (Bob)
Alice.divorce
Alice.marry (Charles)

Image from [MAK24]



11/15

Current solution. Semantic collaboration

Reference leak is solved by keeping track of two collections of objects:

▶ observers — objects whose invariants depend on this object

▶ subjects — other objects that are used in the invariant of this object

set_spouse (other: PERSON)
require
inv_only ([]) -- don’t expect invariant to hold

do
spouse := other

end

invariant
spouse_subject: is_married implies subjects = { spouse }
-- reading ‘spouse.spouse’ is now allowed

spouse_observer: is_married implies spouse.observers.has (Current)
reciprocal: is_married implies (spouse.spouse =Current)



12/15

Example: Furtive access

marry (other: PERSON)
do
set_married
other.set_married
set_spouse (other)

-- Here other.is_married = True but other.spouse = Void
-- so other’s invariant does not hold
-- but it must hold before the call

other.set_spouse (Current)
end



13/15

New solution. Invariant slicing

The recent paper from our chair proposes a new solution without the annotation
burden [MAK24].

Invariant slicing is based on using the feature export status.

When making a call x.r on an object x of the routine r, only the part of the invariant
which has the same or lower visibility (export status) can be relied on and only that
part of the invariant must be reestablished.



14/15

New solution. Invariant slicing for furtive access

class
PERSON

feature
spouse: detachable PERSON
is_married: BOOLEAN

marry (other: PERSON)
do
set_married ; other.set_married
set_spouse (other) ; other.set_spouse (Current)

end

feature {PERSON}
set_married (m: BOOLEAN) do married := m end
set_spouse (o: PERSON) do spouse := o end

invariant
married_iff_has_spouse: is_married =(spouse ̸=Void)
reciprocal: is_married implies (spouse.spouse =Current)

end



15/15

References I

Bertrand Meyer, Alisa Arkadova, and Alexander Kogtenkov, The concept of class
invariant in object-oriented programming, Formal Aspects of Computing 36
(2024), no. 1, 1–38.

arXiv link: https://arxiv.org/abs/2109.06557

These slides are based on our previous presentation with Alessandro Schena at the
CIRCUS workshop in June 2024 in Schaffhausen.
Currently we are working on the integration into EiffelStudio. Stay tuned!

https://arxiv.org/abs/2109.06557
https://arxiv.org/abs/2109.06557

	Introduction
	Main Content

