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Why detect redundancy in requirements?

• Requirements are correctness criteria, represent the desired behaviour of a system.

• A requirements specification should describe a system correctly, completely, and concisely.

• Redundancies in a requirements specification can be intended or unintended.

• Either way, they have to be known.
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What is redundancy?

A requirement is redundant if it can be omitted from the set of requirements without changing

the specified system behaviour.

∧
{ri∈R|i ̸=j}

ri |= rj
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How do we detect redundancy?

∧
{ri∈R|i ̸=j}

ri |= rj

⋂
{Ai∈R|i ̸=j}

L(Ai ) ⊆ L(Aj)

⋂
{Ai∈R|i ̸=j}

L(Ai ) ∩ L(Aj) = ∅

¬∃π • P(A0, ...,Aj , ...,An) ∋π
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Complementing Phase Event Automata

r1: If sensor holds, then light holds after at most 3 time units.

L(A)

L(A)

Σ∗

p0
¬s ∨ l
true

p1
s ∧¬l
c≤3

p2
¬s ∧¬l
c≤3

c := 0

l′

l′

l′

c < 3

c < 3

c < 3

run: sequence of configurations: (p0, β0, γ0, t0), ..., (pn, βn, γn, tn)

p⊥
true
true

false

false

l′ ∧ c ≥ 3
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Encoding Redundancy as a Program Analysis Task

• Instead of encoding P(A0, ..,Aj , ...,An) for each rj , we encode Pred = P(At
0, ..,At

j , ...,At
n)

only once.

• Pred simulates the execution of Ared = At
0||...||At

j ||...||At
n.

• A run in Ared that contains a configuration ((p0, ..., pj , ..., pn), β, γ, t), where pj = pj⊥,

while pi ̸= pi⊥ for all i ̸= j , represents system behaviour that violates rj , but is not

prohibited by the rest.

• For each requirement rj : introduce an error location l jerr to Pred with an annotation

expressing the above.

l jerr is reachable if and only if the requirement is not redundant.

l jerr is not reachable if and only if the requirement is redundant
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Toy Example

r1: If sensor holds, then light holds after at most 3 time units.

r2: If sensor holds, then light holds after at most 5 time units.
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Resulting Boogie Program (for our toy example)

l0

lloop

State Invariants

lc

l 1

l 2

Edges

assume (pc1 = 0 || pc1 = 1) && ...

c1 := 0.0; c2 := 0.0

havoc delta

assume delta > 0.0

c1 := c1 + delta; ...

assume Rdc(Ar1 )

assume Rdc(Ar2 )
havoc s’, l’

s:=s’

l:=l’

initialise program counter to an

initial location, set clocks to 0.0

advance clocks by non-

deterministically chosen duration

check for each current loca-

tion of each PEA if the state

invariant and clock invariant

are satisfied

check if transitions can be

taken, change program counter

accordingly

Rdc(Ar1) = (pcr1 = p⊥) ∧ (pcr2 ̸= p⊥)

Rdc(Ar2) = (pcr2 = p⊥) ∧ (pcr1 ̸= p⊥)
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Evaluation

Requirements Redundancy

ID R RT V No Yes TO T (min)

dev-01 26 21 27 26 0 0 0.7

dev-02 50 47 53 49 1 0 5.8

dev-03 52 11 34 51 0 1 15.9

dev-04 58 53 53 57 1 0 7.2

dev-05 68 64 89 64 2 2 39.7

abz 83 52 52 78 5 0 23.3

dev-06 100 95 101 99 0 1 21.6

dev-07 107 80 172 107 0 0 3.5

dev-08 263 234 239 235 7 21 375.5

dev-09 407 358 326 396 4 7 464.1

dev-10 699 543 1003 684 7 8 819.2

• Implemented as part of Ultimate ReqAnalyzer

• 15min timeout per requirement; AMD Ryzen 5 5600 6-Core CPU with 3.5 GHz and 30GB

RAM
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Conclusion

Recap

• Classical approach to redundancy

• Encoded as program analysis task

• Scales well on real requirements sets

Future Work

• Extract explanations to support interpretation of redundancy

analysis results

• Minimisation of Phase Event Automata

• Upcoming journal submission: Redundancy vs. Vacuity

9



Conclusion

Recap

• Classical approach to redundancy

• Encoded as program analysis task

• Scales well on real requirements sets

Future Work

• Extract explanations to support interpretation of redundancy

analysis results

• Minimisation of Phase Event Automata

• Upcoming journal submission: Redundancy vs. Vacuity

9



9



Formalization

Formalization

10

https://ultimate-pa.github.io/hanfor/introduction/index.html#requirement-formalization


Strict Clock Invariants

p0¬y
true

p1
y

c<5

c < 5

c := 0

p0¬y
true

p1
y

c<5 c=5

p⊥
true
true

c < 5
c := 0

c < 5

c ≥ 5
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Deep Dive

Non-sink transitions of the totalized PEA:

E t(p) :=


E (p) if I (p) = I t(p),

{(p, g t ,X , p′) | (p, g ,X , p′) ∈ E ∧ g t = (g ∧
∧

(ci<ti )∈I (p)

ci < ti )} otherwise.

Guards for the sink transitions:

g⊥(p) := p⊥¬
∨

(p,g ,X ,p′)∈E t

g ∧ s ′(p′) ∧
∧

{δc |δc∈I<(p′)∧c ̸∈X}

δc


g in
⊥ := ¬

∨
(g ,p)∈E0

(g ∧ s ′(p))

Sink transitions of the totalized PEA:

E⊥ :=
⋃
p∈P

(p, g⊥(p), ∅, p⊥) ∪ {(p⊥, true, ∅, p⊥)}
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