
Scalable Redundancy Detection for Real Time Requirements

Lena Funk, joint work with Elisabeth Henkel, Nico Hauff, Vincent Langenfeld, Andreas Podelski

September 5, 2024

University of Freiburg

Why detect redundancy in requirements?

• Requirements are correctness criteria, represent the desired behaviour of a system.

• A requirements specification should describe a system correctly, completely, and concisely.

• Redundancies in a requirements specification can be intended or unintended.

• Either way, they have to be known.

1

Why detect redundancy in requirements?

• Requirements are correctness criteria, represent the desired behaviour of a system.

• A requirements specification should describe a system correctly, completely, and concisely.

• Redundancies in a requirements specification can be intended or unintended.

• Either way, they have to be known.

1

Why detect redundancy in requirements?

• Requirements are correctness criteria, represent the desired behaviour of a system.

• A requirements specification should describe a system correctly, completely, and concisely.

• Redundancies in a requirements specification can be intended or unintended.

• Either way, they have to be known.

1

Why detect redundancy in requirements?

• Requirements are correctness criteria, represent the desired behaviour of a system.

• A requirements specification should describe a system correctly, completely, and concisely.

• Redundancies in a requirements specification can be intended or unintended.

• Either way, they have to be known.

1

What is redundancy?

A requirement is redundant if it can be omitted from the set of requirements without changing

the specified system behaviour.

∧
{ri∈R|i ̸=j}

ri |= rj

2

What is redundancy?

A requirement is redundant if it can be omitted from the set of requirements without changing

the specified system behaviour.

∧
{ri∈R|i ̸=j}

ri |= rj

2

How do we detect redundancy?

∧
{ri∈R|i ̸=j}

ri |= rj

⋂
{Ai∈R|i ̸=j}

L(Ai) ⊆ L(Aj)

⋂
{Ai∈R|i ̸=j}

L(Ai) ∩ L(Aj) = ∅

¬∃π • P(A0, ...,Aj , ...,An) ∋π

3

How do we detect redundancy?

∧
{ri∈R|i ̸=j}

ri |= rj

⋂
{Ai∈R|i ̸=j}

L(Ai) ⊆ L(Aj)

⋂
{Ai∈R|i ̸=j}

L(Ai) ∩ L(Aj) = ∅

¬∃π • P(A0, ...,Aj , ...,An) ∋π

3

How do we detect redundancy?

∧
{ri∈R|i ̸=j}

ri |= rj

⋂
{Ai∈R|i ̸=j}

L(Ai) ⊆ L(Aj)

⋂
{Ai∈R|i ̸=j}

L(Ai) ∩ L(Aj) = ∅

¬∃π • P(A0, ...,Aj , ...,An) ∋π

3

How do we detect redundancy?

∧
{ri∈R|i ̸=j}

ri |= rj

⋂
{Ai∈R|i ̸=j}

L(Ai) ⊆ L(Aj)

⋂
{Ai∈R|i ̸=j}

L(Ai) ∩ L(Aj) = ∅

¬∃π • P(A0, ...,Aj , ...,An) ∋π

3

Complementing Phase Event Automata

r1: If sensor holds, then light holds after at most 3 time units.

L(A)

L(A)

Σ∗

p0
¬s ∨ l
true

p1
s ∧¬l
c≤3

p2
¬s ∧¬l
c≤3

c := 0

l′

l′

l′

c < 3

c < 3

c < 3

run: sequence of configurations: (p0, β0, γ0, t0), ..., (pn, βn, γn, tn)

p⊥
true
true

false

false

l′ ∧ c ≥ 3

4

Complementing Phase Event Automata

r1: If sensor holds, then light holds after at most 3 time units.

L(A)

L(A)

Σ∗

p0
¬s ∨ l
true

p1
s ∧¬l
c≤3

p2
¬s ∧¬l
c≤3

c := 0

l′

l′

l′

c < 3

c < 3

c < 3

run: sequence of configurations: (p0, β0, γ0, t0), ..., (pn, βn, γn, tn)

p⊥
true
true

false

false

l′ ∧ c ≥ 3

4

Complementing Phase Event Automata

r1: If sensor holds, then light holds after at most 3 time units.

L(A)

L(A)

Σ∗

p0
¬s ∨ l
true

p1
s ∧¬l
c≤3

p2
¬s ∧¬l
c≤3

c := 0

l′

l′

l′

c < 3

c < 3

c < 3

run: sequence of configurations: (p0, β0, γ0, t0), ..., (pn, βn, γn, tn)

p⊥
true
true

false

false

l′ ∧ c ≥ 3

4

Complementing Phase Event Automata

r1: If sensor holds, then light holds after at most 3 time units.

L(A)

L(A)

Σ∗

p0
¬s ∨ l
true

p1
s ∧¬l
c≤3

p2
¬s ∧¬l
c≤3

c := 0

l′

l′

l′

c < 3

c < 3

c < 3

run: sequence of configurations: (p0, β0, γ0, t0), ..., (pn, βn, γn, tn)

p⊥
true
true

l′ ∧ c ≥ 3

false

false

l′ ∧ c ≥ 3

4

Complementing Phase Event Automata

r1: If sensor holds, then light holds after at most 3 time units.

L(A)

L(A)

Σ∗

p0
¬s ∨ l
true

p1
s ∧¬l
c≤3

p2
¬s ∧¬l
c≤3

c := 0

l′

l′

l′

c < 3

c < 3

c < 3

run: sequence of configurations: (p0, β0, γ0, t0), ..., (pn, βn, γn, tn)

p⊥
true
true

l′ ∧ c ≥ 3

false

false

l′ ∧ c ≥ 3

4

Complementing Phase Event Automata

r1: If sensor holds, then light holds after at most 3 time units.

L(A)

L(A)

Σ∗

p0
¬s ∨ l
true

p1
s ∧¬l
c≤3

p2
¬s ∧¬l
c≤3

c := 0

l′

l′

l′

c < 3

c < 3

c < 3

run: sequence of configurations: (p0, β0, γ0, t0), ..., (pn, βn, γn, tn)

p⊥
true
true

l′ ∧ c ≥ 3

false

false

l′ ∧ c ≥ 3

4

Complementing Phase Event Automata

r1: If sensor holds, then light holds after at most 3 time units.

L(A)

L(A)

Σ∗

p0
¬s ∨ l
true

p1
s ∧¬l
c≤3

p2
¬s ∧¬l
c≤3

c := 0

l′

l′

l′

c < 3

c < 3

c < 3

run: sequence of configurations: (p0, β0, γ0, t0), ..., (pn, βn, γn, tn)

p⊥
true
true

l′ ∧ c ≥ 3

false

false

l′ ∧ c ≥ 3

4

Encoding Redundancy as a Program Analysis Task

• Instead of encoding P(A0, ..,Aj , ...,An) for each rj , we encode Pred = P(At
0, ..,At

j , ...,At
n)

only once.

• Pred simulates the execution of Ared = At
0||...||At

j ||...||At
n.

• A run in Ared that contains a configuration ((p0, ..., pj , ..., pn), β, γ, t), where pj = pj⊥,

while pi ̸= pi⊥ for all i ̸= j , represents system behaviour that violates rj , but is not

prohibited by the rest.

• For each requirement rj : introduce an error location l jerr to Pred with an annotation

expressing the above.

l jerr is reachable if and only if the requirement is not redundant.

l jerr is not reachable if and only if the requirement is redundant

5

Encoding Redundancy as a Program Analysis Task

• Instead of encoding P(A0, ..,Aj , ...,An) for each rj , we encode Pred = P(At
0, ..,At

j , ...,At
n)

only once.

• Pred simulates the execution of Ared = At
0||...||At

j ||...||At
n.

• A run in Ared that contains a configuration ((p0, ..., pj , ..., pn), β, γ, t), where pj = pj⊥,

while pi ̸= pi⊥ for all i ̸= j , represents system behaviour that violates rj , but is not

prohibited by the rest.

• For each requirement rj : introduce an error location l jerr to Pred with an annotation

expressing the above.

l jerr is reachable if and only if the requirement is not redundant.

l jerr is not reachable if and only if the requirement is redundant

5

Toy Example

r1: If sensor holds, then light holds after at most 3 time units.

r2: If sensor holds, then light holds after at most 5 time units.

6

Resulting Boogie Program (for our toy example)

l0

lloop

State Invariants

lc

l 1

l 2

Edges

assume (pc1 = 0 || pc1 = 1) && ...

c1 := 0.0; c2 := 0.0

havoc delta

assume delta > 0.0

c1 := c1 + delta; ...

assume Rdc(Ar1)

assume Rdc(Ar2)
havoc s’, l’

s:=s’

l:=l’

initialise program counter to an

initial location, set clocks to 0.0

advance clocks by non-

deterministically chosen duration

check for each current loca-

tion of each PEA if the state

invariant and clock invariant

are satisfied

check if transitions can be

taken, change program counter

accordingly

Rdc(Ar1) = (pcr1 = p⊥) ∧ (pcr2 ̸= p⊥)

Rdc(Ar2) = (pcr2 = p⊥) ∧ (pcr1 ̸= p⊥)

7

Resulting Boogie Program (for our toy example)

l0

lloop

State Invariants

lc

l 1

l 2

Edges

assume (pc1 = 0 || pc1 = 1) && ...

c1 := 0.0; c2 := 0.0

havoc delta

assume delta > 0.0

c1 := c1 + delta; ...

assume Rdc(Ar1)

assume Rdc(Ar2)
havoc s’, l’

s:=s’

l:=l’

initialise program counter to an

initial location, set clocks to 0.0

advance clocks by non-

deterministically chosen duration

check for each current loca-

tion of each PEA if the state

invariant and clock invariant

are satisfied

check if transitions can be

taken, change program counter

accordingly

Rdc(Ar1) = (pcr1 = p⊥) ∧ (pcr2 ̸= p⊥)

Rdc(Ar2) = (pcr2 = p⊥) ∧ (pcr1 ̸= p⊥)

7

Resulting Boogie Program (for our toy example)

l0

lloop

State Invariants

lc

l 1

l 2

Edges

assume (pc1 = 0 || pc1 = 1) && ...

c1 := 0.0; c2 := 0.0

havoc delta

assume delta > 0.0

c1 := c1 + delta; ...

assume Rdc(Ar1)

assume Rdc(Ar2)
havoc s’, l’

s:=s’

l:=l’

initialise program counter to an

initial location, set clocks to 0.0

advance clocks by non-

deterministically chosen duration

check for each current loca-

tion of each PEA if the state

invariant and clock invariant

are satisfied

check if transitions can be

taken, change program counter

accordingly

Rdc(Ar1) = (pcr1 = p⊥) ∧ (pcr2 ̸= p⊥)

Rdc(Ar2) = (pcr2 = p⊥) ∧ (pcr1 ̸= p⊥)

7

Resulting Boogie Program (for our toy example)

l0

lloop

State Invariants

lc

l 1

l 2

Edges

assume (pc1 = 0 || pc1 = 1) && ...

c1 := 0.0; c2 := 0.0

havoc delta

assume delta > 0.0

c1 := c1 + delta; ...

assume Rdc(Ar1)

assume Rdc(Ar2)
havoc s’, l’

s:=s’

l:=l’

initialise program counter to an

initial location, set clocks to 0.0

advance clocks by non-

deterministically chosen duration

check for each current loca-

tion of each PEA if the state

invariant and clock invariant

are satisfied

check if transitions can be

taken, change program counter

accordingly

Rdc(Ar1) = (pcr1 = p⊥) ∧ (pcr2 ̸= p⊥)

Rdc(Ar2) = (pcr2 = p⊥) ∧ (pcr1 ̸= p⊥)

7

Resulting Boogie Program (for our toy example)

l0

lloop

State Invariants

lc

l 1

l 2

Edges

assume (pc1 = 0 || pc1 = 1) && ...

c1 := 0.0; c2 := 0.0

havoc delta

assume delta > 0.0

c1 := c1 + delta; ...

assume Rdc(Ar1)

assume Rdc(Ar2)
havoc s’, l’

s:=s’

l:=l’

initialise program counter to an

initial location, set clocks to 0.0

advance clocks by non-

deterministically chosen duration

check for each current loca-

tion of each PEA if the state

invariant and clock invariant

are satisfied

check if transitions can be

taken, change program counter

accordingly

Rdc(Ar1) = (pcr1 = p⊥) ∧ (pcr2 ̸= p⊥)

Rdc(Ar2) = (pcr2 = p⊥) ∧ (pcr1 ̸= p⊥)

7

Resulting Boogie Program (for our toy example)

l0

lloop

State Invariants

lc

l 1

l 2

Edges

assume (pc1 = 0 || pc1 = 1) && ...

c1 := 0.0; c2 := 0.0

havoc delta

assume delta > 0.0

c1 := c1 + delta; ...

assume Rdc(Ar1)

assume Rdc(Ar2)
havoc s’, l’

s:=s’

l:=l’

initialise program counter to an

initial location, set clocks to 0.0

advance clocks by non-

deterministically chosen duration

check for each current loca-

tion of each PEA if the state

invariant and clock invariant

are satisfied

check if transitions can be

taken, change program counter

accordingly

Rdc(Ar1) = (pcr1 = p⊥) ∧ (pcr2 ̸= p⊥)

Rdc(Ar2) = (pcr2 = p⊥) ∧ (pcr1 ̸= p⊥)

7

Evaluation

Requirements Redundancy

ID R RT V No Yes TO T (min)

dev-01 26 21 27 26 0 0 0.7

dev-02 50 47 53 49 1 0 5.8

dev-03 52 11 34 51 0 1 15.9

dev-04 58 53 53 57 1 0 7.2

dev-05 68 64 89 64 2 2 39.7

abz 83 52 52 78 5 0 23.3

dev-06 100 95 101 99 0 1 21.6

dev-07 107 80 172 107 0 0 3.5

dev-08 263 234 239 235 7 21 375.5

dev-09 407 358 326 396 4 7 464.1

dev-10 699 543 1003 684 7 8 819.2

• Implemented as part of Ultimate ReqAnalyzer

• 15min timeout per requirement; AMD Ryzen 5 5600 6-Core CPU with 3.5 GHz and 30GB

RAM

8

Conclusion

Recap

• Classical approach to redundancy

• Encoded as program analysis task

• Scales well on real requirements sets

Future Work

• Extract explanations to support interpretation of redundancy

analysis results

• Minimisation of Phase Event Automata

• Upcoming journal submission: Redundancy vs. Vacuity

9

Conclusion

Recap

• Classical approach to redundancy

• Encoded as program analysis task

• Scales well on real requirements sets

Future Work

• Extract explanations to support interpretation of redundancy

analysis results

• Minimisation of Phase Event Automata

• Upcoming journal submission: Redundancy vs. Vacuity

9

9

Formalization

Formalization

10

https://ultimate-pa.github.io/hanfor/introduction/index.html#requirement-formalization

Strict Clock Invariants

p0¬y
true

p1
y

c<5

c < 5

c := 0

p0¬y
true

p1
y

c<5 c=5

p⊥
true
true

c < 5
c := 0

c < 5

c ≥ 5

11

Deep Dive

Non-sink transitions of the totalized PEA:

E t(p) :=

E (p) if I (p) = I t(p),

{(p, g t ,X , p′) | (p, g ,X , p′) ∈ E ∧ g t = (g ∧
∧

(ci<ti)∈I (p)

ci < ti)} otherwise.

Guards for the sink transitions:

g⊥(p) := p⊥¬
∨

(p,g ,X ,p′)∈E t

g ∧ s ′(p′) ∧
∧

{δc |δc∈I<(p′)∧c ̸∈X}

δc

g in
⊥ := ¬

∨
(g ,p)∈E0

(g ∧ s ′(p))

Sink transitions of the totalized PEA:

E⊥ :=
⋃
p∈P

(p, g⊥(p), ∅, p⊥) ∪ {(p⊥, true, ∅, p⊥)}

12

