Scalable Redundancy Detection for Real Time Requirements

Lena Funk, joint work with Elisabeth Henkel, Nico Hauff, Vincent Langenfeld, Andreas Podelski September 5, 2024

University of Freiburg

• Requirements are correctness criteria, represent the desired behaviour of a system.

- Requirements are correctness criteria, represent the desired behaviour of a system.
- A requirements specification should describe a system correctly, completely, and concisely.
- Requirements are correctness criteria, represent the desired behaviour of a system.
- A requirements specification should describe a system correctly, completely, and concisely.
- Redundancies in a requirements specification can be *intended* or *unintended*.
- Requirements are correctness criteria, represent the desired behaviour of a system.
- A requirements specification should describe a system correctly, completely, and concisely.
- Redundancies in a requirements specification can be intended or unintended.
- Either way, they have to be known.

A requirement is redundant if it can be omitted from the set of requirements without changing the specified system behaviour.

A requirement is redundant if it can be omitted from the set of requirements without changing the specified system behaviour.

> \bigwedge $r_i \models r_j$ ${r_i \in \mathcal{R} | i \neq j}$

$$
\bigwedge_{\{r_i\in\mathcal{R}|i\neq j\}}r_i\models r_j
$$

$$
\bigwedge_{\{r_i\in\mathcal{R}|i\neq j\}}r_i\models r_j
$$

$$
\bigcap_{\{A_i\in\mathcal{R}|i\neq j\}}\mathcal{L}(\mathcal{A}_i)\subseteq\mathcal{L}(\mathcal{A}_j)
$$

$$
\bigwedge_{\{r_i\in\mathcal{R}|i\neq j\}}r_i\models r_j
$$

$$
\bigcap_{\{A_i \in \mathcal{R} \mid i \neq j\}} \mathcal{L}(A_i) \subseteq \mathcal{L}(A_j)
$$

$$
\bigcap_{\{A_i \in \mathcal{R} \mid i \neq j\}} \mathcal{L}(\mathcal{A}_i) \cap \overline{\mathcal{L}(\mathcal{A}_j)} = \emptyset
$$

$$
\bigwedge_{\{r_i\in\mathcal{R}|i\neq j\}}r_i\models r_j
$$

$$
\bigcap_{\{A_i \in \mathcal{R} \mid i \neq j\}} \mathcal{L}(A_i) \subseteq \mathcal{L}(A_j)
$$

$$
\bigcap_{\{A_i \in \mathcal{R} \mid i \neq j\}} \mathcal{L}(\mathcal{A}_i) \cap \overline{\mathcal{L}(\mathcal{A}_j)} = \emptyset
$$

$$
\neg \exists \pi \bullet \mathcal{P}(\mathcal{A}_0, ..., \overline{\mathcal{A}_j}, ..., \mathcal{A}_n) \ni \pi
$$

 r_1 : If sensor holds, then *light* holds after at most 3 time units.

run: sequence of configurations: $(p_0, \beta_0, \gamma_0, t_0), ..., (p_n, \beta_n, \gamma_n, t_n)$

Encoding Redundancy as a Program Analysis Task

- Instead of encoding $\mathcal{P}(\mathcal{A}_0, ..., \overline{\mathcal{A}_j}, ..., \mathcal{A}_n)$ for each r_j , we encode $\mathcal{P}_{red} = \mathcal{P}(\mathcal{A}_0^t, ..., \mathcal{A}_j^t, ..., \mathcal{A}_n^t)$ only once.
- \mathcal{P}_{red} simulates the execution of $\mathcal{A}_{red} = \mathcal{A}_{0}^{t} \vert \vert ... \vert \vert \mathcal{A}_{j}^{t} \vert \vert ... \vert \vert \mathcal{A}_{n}^{t}.$
- A run in \mathcal{A}_{red} that contains a configuration $((p_0, ..., p_j, ..., p_n), \beta, \gamma, t)$, where $p_j = p^j_{\perp}$, while $p_i \neq p_{\perp}^i$ for all $i \neq j$, represents system behaviour that violates \mathbf{r}_j , but is not prohibited by the rest.
- \bullet For each requirement ${\tt r}_j$: introduce an error location l_{err}^j to ${\cal P}_{red}$ with an annotation expressing the above.

Encoding Redundancy as a Program Analysis Task

- Instead of encoding $\mathcal{P}(\mathcal{A}_0, ..., \overline{\mathcal{A}_j}, ..., \mathcal{A}_n)$ for each r_j , we encode $\mathcal{P}_{red} = \mathcal{P}(\mathcal{A}_0^t, ..., \mathcal{A}_j^t, ..., \mathcal{A}_n^t)$ only once.
- \mathcal{P}_{red} simulates the execution of $\mathcal{A}_{red} = \mathcal{A}_{0}^{t} \vert \vert ... \vert \vert \mathcal{A}_{j}^{t} \vert \vert ... \vert \vert \mathcal{A}_{n}^{t}.$
- A run in \mathcal{A}_{red} that contains a configuration $((p_0, ..., p_j, ..., p_n), \beta, \gamma, t)$, where $p_j = p^j_{\perp}$, while $p_i \neq p_{\perp}^i$ for all $i \neq j$, represents system behaviour that violates \mathbf{r}_j , but is not prohibited by the rest.
- \bullet For each requirement ${\tt r}_j$: introduce an error location l_{err}^j to ${\cal P}_{red}$ with an annotation expressing the above.

 l_{err}^{j} is reachable if and only if the requirement is not redundant. l_{err}^{j} is not reachable if and only if the requirement is redundant

 r_1 : If sensor holds, then *light* holds after at most 3 time units. r_2 : If sensor holds, then *light* holds after at most 5 time units.

Evaluation

• Implemented as part of ULTIMATE REQANALYZER

J.

• 15 min timeout per requirement; AMD Ryzen 5 5600 6-Core CPU with 3.5 GHz and 30 GB RAM

Recap

- Classical approach to redundancy
- Encoded as program analysis task
- Scales well on real requirements sets

Recap

- Classical approach to redundancy
- Encoded as program analysis task
- Scales well on real requirements sets

Future Work

- Extract explanations to support interpretation of redundancy analysis results
- Minimisation of Phase Event Automata
- Upcoming journal submission: Redundancy vs. Vacuity

[Formalization](https://ultimate-pa.github.io/hanfor/introduction/index.html#requirement-formalization)

Deep Dive

Non-sink transitions of the totalized PEA:

$$
E^{t}(p) := \begin{cases} E(p) & \text{if } I(p) = I^{t}(p), \\ \{ (p, g^{t}, X, p') \mid (p, g, X, p') \in E \land g^{t} = (g \land \bigwedge_{(c_i < t_i) \in I(p)} c_i < t_i \} \\ \end{cases} \text{otherwise.}
$$

Guards for the sink transitions:

$$
g_{\perp}(p) := p_{\perp} \neg \bigvee_{(p,g,X,p') \in E^t} \left(g \wedge s'(p') \wedge \bigwedge_{\{\delta_c | \delta_c \in I_{<}(p') \wedge c \not\in X\}} \delta_c \right)
$$

$$
g_{\perp}^{in} := \neg \bigvee_{(g,p) \in E_0} (g \wedge s'(p))
$$

Sink transitions of the totalized PEA:

$$
\mathcal{E}_{\perp} := \bigcup_{p \in P} (p, g_{\perp}(p), \emptyset, p_{\perp}) \cup \{ (p_{\perp}, \mathit{true}, \emptyset, p_{\perp}) \}
$$