
AVM’24, Freiburg

Challenges (and Solutions) in
Memory-Model-Aware Verification

Levente Bajczi

September 6, 2024

Critical Systems
Research Group

Challenges for Memory-Model-Aware Verification

Program

x ∶= 0
x ∶= 1 𝑎 ∶= x
x ∶= 2 𝑏 ∶= x

po

Instruction
order

co
Memory update
order (W -> W)

rf
Dataflow
(W -> R)

∀𝑟x∃𝑤x ∶ 𝑤x
rf

−→ 𝑟x
∀𝑤x

1, 𝑤x
2 ∶ 𝑤x

1
co
−→ 𝑤x

2 ∨ 𝑤x
2

co
−→ 𝑤x

1

…

Memory model (example)

? ?
po

W W
co

W R
rf

→ ? ?
hb

W R

W

rf

co →
W R

W

hb

Find co and rf for a given po
such that hb is acyclic.

Witnesses?

Safety?

Tools?

Challenges (and Solutions) in Memory-Model-Aware Verification 1 AVM’24, Freiburg

Challenges for Memory-Model-Aware Verification

Program

x ∶= 0
x ∶= 1 𝑎 ∶= x
x ∶= 2 𝑏 ∶= x

po

Instruction
order

co
Memory update
order (W -> W)

rf
Dataflow
(W -> R)

∀𝑟x∃𝑤x ∶ 𝑤x
rf

−→ 𝑟x
∀𝑤x

1, 𝑤x
2 ∶ 𝑤x

1
co
−→ 𝑤x

2 ∨ 𝑤x
2

co
−→ 𝑤x

1

…

Memory model (example)

? ?
po

W W
co

W R
rf

→ ? ?
hb

W R

W

rf

co →
W R

W

hb

Find co and rf for a given po
such that hb is acyclic.

Witnesses?

Safety?

Tools?

Challenges (and Solutions) in Memory-Model-Aware Verification 1 AVM’24, Freiburg

Challenges for Memory-Model-Aware Verification

Program

x ∶= 0
x ∶= 1 𝑎 ∶= x
x ∶= 2 𝑏 ∶= x

po

Instruction
order

co
Memory update
order (W -> W)

rf
Dataflow
(W -> R)

∀𝑟x∃𝑤x ∶ 𝑤x
rf

−→ 𝑟x
∀𝑤x

1, 𝑤x
2 ∶ 𝑤x

1
co
−→ 𝑤x

2 ∨ 𝑤x
2

co
−→ 𝑤x

1

…

Memory model (example)

? ?
po

W W
co

W R
rf

→ ? ?
hb

W R

W

rf

co →
W R

W

hb

Find co and rf for a given po
such that hb is acyclic.

Witnesses?

Safety?

Tools?

Challenges (and Solutions) in Memory-Model-Aware Verification 1 AVM’24, Freiburg

Challenges for Memory-Model-Aware Verification

Program

x ∶= 0
x ∶= 1 𝑎 ∶= x
x ∶= 2 𝑏 ∶= x

po

Instruction
order

co
Memory update
order (W -> W)

rf
Dataflow
(W -> R)

∀𝑟x∃𝑤x ∶ 𝑤x
rf

−→ 𝑟x
∀𝑤x

1, 𝑤x
2 ∶ 𝑤x

1
co
−→ 𝑤x

2 ∨ 𝑤x
2

co
−→ 𝑤x

1

…

Memory model (example)

? ?
po

W W
co

W R
rf

→ ? ?
hb

W R

W

rf

co →
W R

W

hb

Find co and rf for a given po
such that hb is acyclic.

Witnesses?

Safety?

Tools?

Challenges (and Solutions) in Memory-Model-Aware Verification 1 AVM’24, Freiburg

Challenges for Memory-Model-Aware Verification

Program

x ∶= 0
x ∶= 1 𝑎 ∶= x
x ∶= 2 𝑏 ∶= x

po

Instruction
order

co
Memory update
order (W -> W)

rf
Dataflow
(W -> R)

∀𝑟x∃𝑤x ∶ 𝑤x
rf

−→ 𝑟x
∀𝑤x

1, 𝑤x
2 ∶ 𝑤x

1
co
−→ 𝑤x

2 ∨ 𝑤x
2

co
−→ 𝑤x

1

…

Memory model (example)

? ?
po

W W
co

W R
rf

→ ? ?
hb

W R

W

rf

co →
W R

W

hb

Find co and rf for a given po
such that hb is acyclic.

Witnesses?

Safety?

Tools?

Challenges (and Solutions) in Memory-Model-Aware Verification 1 AVM’24, Freiburg

Challenges for Memory-Model-Aware Verification

Program

x ∶= 0
x ∶= 1 𝑎 ∶= x
x ∶= 2 𝑏 ∶= x

po

Instruction
order

co
Memory update
order (W -> W)

rf
Dataflow
(W -> R)

∀𝑟x∃𝑤x ∶ 𝑤x
rf

−→ 𝑟x
∀𝑤x

1, 𝑤x
2 ∶ 𝑤x

1
co
−→ 𝑤x

2 ∨ 𝑤x
2

co
−→ 𝑤x

1

…

Memory model (example)

? ?
po

W W
co

W R
rf

→ ? ?
hb

W R

W

rf

co →
W R

W

hb

Find co and rf for a given po
such that hb is acyclic.

Witnesses?

Safety?

Tools?

Challenges (and Solutions) in Memory-Model-Aware Verification 1 AVM’24, Freiburg

Memory-Model-Aware Verification

x ∶= 0,y ∶= 0
x ∶= 1 𝑖 ∶= y
y ∶= 1 𝑗 ∶= x

¬(𝑖 = 1 ∧ 𝑗 = 0)

Program with property

x ∶= 1

y ∶= 1

𝑖 ∶= y

𝑗 ∶= x

x ∶= 0 y ∶= 0

po rf co

CEx. candidate(s) (obeying axioms)

Sequential Consistency

All instructions execute in-order

Safe (inconsistent)

Total Store Order
Indep. W->R order is not obeyed

Safe (inconsistent)

Partial Store Order
Indep. W->? order is not obeyed

Unsafe (consistent)

Challenges (and Solutions) in Memory-Model-Aware Verification 2 AVM’24, Freiburg

Memory-Model-Aware Verification

x ∶= 0,y ∶= 0
x ∶= 1 𝑖 ∶= y
y ∶= 1 𝑗 ∶= x

¬(𝑖 = 1 ∧ 𝑗 = 0)

Program with property

x ∶= 1

y ∶= 1

𝑖 ∶= y

𝑗 ∶= x

x ∶= 0 y ∶= 0

po rf co

CEx. candidate(s) (obeying axioms)

Sequential Consistency

All instructions execute in-order

Safe (inconsistent)

Total Store Order
Indep. W->R order is not obeyed

Safe (inconsistent)

Partial Store Order
Indep. W->? order is not obeyed

Unsafe (consistent)

Challenges (and Solutions) in Memory-Model-Aware Verification 2 AVM’24, Freiburg

Memory-Model-Aware Verification

x ∶= 0,y ∶= 0
x ∶= 1 𝑖 ∶= y
y ∶= 1 𝑗 ∶= x

¬(𝑖 = 1 ∧ 𝑗 = 0)

Program with property

x ∶= 1

y ∶= 1

𝑖 ∶= y

𝑗 ∶= x

x ∶= 0 y ∶= 0

po rf co

CEx. candidate(s) (obeying axioms)

Sequential Consistency

All instructions execute in-order

Safe (inconsistent)

Total Store Order
Indep. W->R order is not obeyed

Safe (inconsistent)

Partial Store Order
Indep. W->? order is not obeyed

Unsafe (consistent)

Challenges (and Solutions) in Memory-Model-Aware Verification 2 AVM’24, Freiburg

Memory-Model-Aware Verification

x ∶= 0,y ∶= 0
x ∶= 1 𝑖 ∶= y
y ∶= 1 𝑗 ∶= x

¬(𝑖 = 1 ∧ 𝑗 = 0)

Program with property

x ∶= 1

y ∶= 1

𝑖 ∶= y

𝑗 ∶= x

x ∶= 0 y ∶= 0

po rf co

CEx. candidate(s) (obeying axioms)

Sequential Consistency

All instructions execute in-order

Safe (inconsistent)

Total Store Order
Indep. W->R order is not obeyed

Safe (inconsistent)

Partial Store Order
Indep. W->? order is not obeyed

Unsafe (consistent)

Challenges (and Solutions) in Memory-Model-Aware Verification 2 AVM’24, Freiburg

Memory-Model-Aware Verification

x ∶= 0,y ∶= 0
x ∶= 1 𝑖 ∶= y
y ∶= 1 𝑗 ∶= x

¬(𝑖 = 1 ∧ 𝑗 = 0)

Program with property

x ∶= 1

y ∶= 1

𝑖 ∶= y

𝑗 ∶= x

x ∶= 0 y ∶= 0

po rf co

CEx. candidate(s) (obeying axioms)

Sequential Consistency

All instructions execute in-order

Safe (inconsistent)

Total Store Order
Indep. W->R order is not obeyed

Safe (inconsistent)

Partial Store Order
Indep. W->? order is not obeyed

Unsafe (consistent)

Challenges (and Solutions) in Memory-Model-Aware Verification 2 AVM’24, Freiburg

State-of-the-Art Tools

Exhaustive
Enumeration

▶ Generate execution
candidates, and
check their
consistency

Herd7
(memory model simulator)

▶ Litmus tests

▶ CAT memory model

Stateless Model
Checking

▶ Generate
increasingly larger,
always consistent
executions (traces)

GenMC, Nidhugg, …
▶ (Subset of) C11

▶ Custom library /
hardcoded

Bounded Model
Checking

▶ Encode constraints
of the memory
model in the SMT
query

Dartagnan

▶ (SV-COMP flavored) C

▶ Subset of CAT

▶ (Almost) no interoperability

▶ Verdicts are not verifiable (Dartagnan does produce witnesses for SC)

Challenges (and Solutions) in Memory-Model-Aware Verification 3 AVM’24, Freiburg

State-of-the-Art Tools

Exhaustive
Enumeration

▶ Generate execution
candidates, and
check their
consistency

Herd7
(memory model simulator)

▶ Litmus tests

▶ CAT memory model

Stateless Model
Checking

▶ Generate
increasingly larger,
always consistent
executions (traces)

GenMC, Nidhugg, …
▶ (Subset of) C11

▶ Custom library /
hardcoded

Bounded Model
Checking

▶ Encode constraints
of the memory
model in the SMT
query

Dartagnan

▶ (SV-COMP flavored) C

▶ Subset of CAT

▶ (Almost) no interoperability

▶ Verdicts are not verifiable (Dartagnan does produce witnesses for SC)

Challenges (and Solutions) in Memory-Model-Aware Verification 3 AVM’24, Freiburg

State-of-the-Art Tools

Exhaustive
Enumeration

▶ Generate execution
candidates, and
check their
consistency

Herd7
(memory model simulator)

▶ Litmus tests

▶ CAT memory model

Stateless Model
Checking

▶ Generate
increasingly larger,
always consistent
executions (traces)

GenMC, Nidhugg, …
▶ (Subset of) C11

▶ Custom library /
hardcoded

Bounded Model
Checking

▶ Encode constraints
of the memory
model in the SMT
query

Dartagnan

▶ (SV-COMP flavored) C

▶ Subset of CAT

▶ (Almost) no interoperability

▶ Verdicts are not verifiable (Dartagnan does produce witnesses for SC)

Challenges (and Solutions) in Memory-Model-Aware Verification 3 AVM’24, Freiburg

State-of-the-Art Tools

Exhaustive
Enumeration

▶ Generate execution
candidates, and
check their
consistency

Herd7
(memory model simulator)

▶ Litmus tests

▶ CAT memory model

Stateless Model
Checking

▶ Generate
increasingly larger,
always consistent
executions (traces)

GenMC, Nidhugg, …
▶ (Subset of) C11

▶ Custom library /
hardcoded

Bounded Model
Checking

▶ Encode constraints
of the memory
model in the SMT
query

Dartagnan

▶ (SV-COMP flavored) C

▶ Subset of CAT

▶ (Almost) no interoperability

▶ Verdicts are not verifiable (Dartagnan does produce witnesses for SC)

Challenges (and Solutions) in Memory-Model-Aware Verification 3 AVM’24, Freiburg

Witnesses for Violations (in Witness Format 2!)

Thread 0 waypoint type value line column

assume \𝑎𝑡(x, 0) = 0 0 middle
assume \𝑎𝑡(y, 0) = 0 0 end

thread_start 1, 2 1 0

Thread 1

assume \𝑎𝑡(x, 1) = 1 1 end
assume \𝑎𝑡(y, 1) = 1 2 end

Thread 2

assume 𝑖 = \𝑎𝑡(x, 1) 1 end
assume 𝑗 = \𝑎𝑡(y, 0) 2 end
target - 2 end

x ∶= 1

y ∶= 1

𝑖 ∶= y

𝑗 ∶= x

x ∶= 0 y ∶= 0

po rf co

PSO
Indep. W->? order is not obeyed

Unsafe (consistent)

▶ \𝑎𝑡(e, id): Built-in ACSL construct (abused a bit)
▶ [...] referring to the value of the expression e in the state at label id [ACSL 1.20]
▶ Our state labels are integers, and denote ordering of memory events.

Challenges (and Solutions) in Memory-Model-Aware Verification 4 AVM’24, Freiburg

Witnesses for Violations (in Witness Format 2!)
Thread 0 waypoint type value line column

assume \𝑎𝑡(x, 0) = 0 0 middle
assume \𝑎𝑡(y, 0) = 0 0 end

thread_start 1, 2 1 0

Thread 1

assume \𝑎𝑡(x, 1) = 1 1 end
assume \𝑎𝑡(y, 1) = 1 2 end

Thread 2

assume 𝑖 = \𝑎𝑡(x, 1) 1 end
assume 𝑗 = \𝑎𝑡(y, 0) 2 end
target - 2 end

x ∶= 1

y ∶= 1

𝑖 ∶= y

𝑗 ∶= x

x ∶= 0 y ∶= 0

po rf co

PSO
Indep. W->? order is not obeyed

Unsafe (consistent)

▶ \𝑎𝑡(e, id): Built-in ACSL construct (abused a bit)
▶ [...] referring to the value of the expression e in the state at label id [ACSL 1.20]
▶ Our state labels are integers, and denote ordering of memory events.

Challenges (and Solutions) in Memory-Model-Aware Verification 4 AVM’24, Freiburg

Witnesses for Violations (in Witness Format 2!)
Thread 0 waypoint type value line column

assume \𝑎𝑡(x, 0) = 0 0 middle
assume \𝑎𝑡(y, 0) = 0 0 end

thread_start 1, 2 1 0
Thread 1

assume \𝑎𝑡(x, 1) = 1 1 end
assume \𝑎𝑡(y, 1) = 1 2 end

Thread 2

assume 𝑖 = \𝑎𝑡(x, 1) 1 end
assume 𝑗 = \𝑎𝑡(y, 0) 2 end

target - 2 end

x ∶= 1

y ∶= 1

𝑖 ∶= y

𝑗 ∶= x

x ∶= 0 y ∶= 0

po rf co

PSO
Indep. W->? order is not obeyed

Unsafe (consistent)

▶ \𝑎𝑡(e, id): Built-in ACSL construct (abused a bit)
▶ [...] referring to the value of the expression e in the state at label id [ACSL 1.20]
▶ Our state labels are integers, and denote ordering of memory events.

Challenges (and Solutions) in Memory-Model-Aware Verification 4 AVM’24, Freiburg

Witnesses for Violations (in Witness Format 2!)
Thread 0 waypoint type value line column

assume \𝑎𝑡(x, 0) = 0 0 middle
assume \𝑎𝑡(y, 0) = 0 0 end

thread_start 1, 2 1 0
Thread 1

assume \𝑎𝑡(x, 1) = 1 1 end
assume \𝑎𝑡(y, 1) = 1 2 end

Thread 2

assume 𝑖 = \𝑎𝑡(x, 1) 1 end
assume 𝑗 = \𝑎𝑡(y, 0) 2 end

target - 2 end

x ∶= 1

y ∶= 1

𝑖 ∶= y

𝑗 ∶= x

x ∶= 0 y ∶= 0

po rf co

PSO
Indep. W->? order is not obeyed

Unsafe (consistent)

▶ \𝑎𝑡(e, id): Built-in ACSL construct (abused a bit)
▶ [...] referring to the value of the expression e in the state at label id [ACSL 1.20]
▶ Our state labels are integers, and denote ordering of memory events.

Challenges (and Solutions) in Memory-Model-Aware Verification 4 AVM’24, Freiburg

Witnesses for Violations (in Witness Format 2!)
Thread 0 waypoint type value line column

assume \𝑎𝑡(x, 0) = 0 0 middle
assume \𝑎𝑡(y, 0) = 0 0 end

thread_start 1, 2 1 0
Thread 1

assume \𝑎𝑡(x, 1) = 1 1 end
assume \𝑎𝑡(y, 1) = 1 2 end

Thread 2

assume 𝑖 = \𝑎𝑡(x, 1) 1 end
assume 𝑗 = \𝑎𝑡(y, 0) 2 end

target - 2 end

x ∶= 1

y ∶= 1

𝑖 ∶= y

𝑗 ∶= x

x ∶= 0 y ∶= 0

po rf co

PSO
Indep. W->? order is not obeyed

Unsafe (consistent)

▶ \𝑎𝑡(e, id): Built-in ACSL construct (abused a bit)
▶ [...] referring to the value of the expression e in the state at label id [ACSL 1.20]
▶ Our state labels are integers, and denote ordering of memory events.

Challenges (and Solutions) in Memory-Model-Aware Verification 4 AVM’24, Freiburg

Witnesses for Violations (in Witness Format 2!)
Thread 0 waypoint type value line column

assume \𝑎𝑡(x, 0) = 0 0 middle
assume \𝑎𝑡(y, 0) = 0 0 end

thread_start 1, 2 1 0
Thread 1

assume \𝑎𝑡(x, 1) = 1 1 end
assume \𝑎𝑡(y, 1) = 1 2 end

Thread 2

assume 𝑖 = \𝑎𝑡(x, 1) 1 end
assume 𝑗 = \𝑎𝑡(y, 0) 2 end
target - 2 end

x ∶= 1

y ∶= 1

𝑖 ∶= y

𝑗 ∶= x

x ∶= 0 y ∶= 0

po rf co

PSO
Indep. W->? order is not obeyed

Unsafe (consistent)

▶ \𝑎𝑡(e, id): Built-in ACSL construct (abused a bit)
▶ [...] referring to the value of the expression e in the state at label id [ACSL 1.20]
▶ Our state labels are integers, and denote ordering of memory events.

Challenges (and Solutions) in Memory-Model-Aware Verification 4 AVM’24, Freiburg

Witnesses for Correctness

invariant type value line column

location \𝑎𝑡(x, 0) = 0 0 middle
location \𝑎𝑡(y, 0) = 0 0 end
location \𝑎𝑡(x, 1) = 1 1 (left) end
location \𝑎𝑡(y, 1) = 1 2 (left) end

location
∃𝑎 ∶ 𝑎 ∈ {0, 1}
𝑖 = \𝑎𝑡(x, 𝑎) 1 (right) end

location

∃𝑎, 𝑏 ∶ 𝑎, 𝑏 ∈ {0, 1}
𝑗 = \𝑎𝑡(y, 𝑎)
𝑖 = \𝑎𝑡(x, 𝑏)

𝑏 = 1 ⟹ 𝑎 = 1

2 (right) end

location ¬(𝑖 = 1 ∧ 𝑗 = 0) 2 (right) end

x ∶= 0,y ∶= 0
x ∶= 1 𝑖 ∶= y
y ∶= 1 𝑗 ∶= x

¬(𝑖 = 1 ∧ 𝑗 = 0)

SC
All instructions execute in-order

Safe (inconsistent)

▶ state labels are symbolic integers, and denote ordering of memory events.

Where do invariants come from?

Challenges (and Solutions) in Memory-Model-Aware Verification 5 AVM’24, Freiburg

Witnesses for Correctness
invariant type value line column

location \𝑎𝑡(x, 0) = 0 0 middle
location \𝑎𝑡(y, 0) = 0 0 end
location \𝑎𝑡(x, 1) = 1 1 (left) end
location \𝑎𝑡(y, 1) = 1 2 (left) end

location
∃𝑎 ∶ 𝑎 ∈ {0, 1}
𝑖 = \𝑎𝑡(x, 𝑎) 1 (right) end

location

∃𝑎, 𝑏 ∶ 𝑎, 𝑏 ∈ {0, 1}
𝑗 = \𝑎𝑡(y, 𝑎)
𝑖 = \𝑎𝑡(x, 𝑏)

𝑏 = 1 ⟹ 𝑎 = 1

2 (right) end

location ¬(𝑖 = 1 ∧ 𝑗 = 0) 2 (right) end

x ∶= 0,y ∶= 0
x ∶= 1 𝑖 ∶= y
y ∶= 1 𝑗 ∶= x

¬(𝑖 = 1 ∧ 𝑗 = 0)

SC
All instructions execute in-order

Safe (inconsistent)

▶ state labels are symbolic integers, and denote ordering of memory events.

Where do invariants come from?

Challenges (and Solutions) in Memory-Model-Aware Verification 5 AVM’24, Freiburg

Witnesses for Correctness
invariant type value line column

location \𝑎𝑡(x, 0) = 0 0 middle
location \𝑎𝑡(y, 0) = 0 0 end
location \𝑎𝑡(x, 1) = 1 1 (left) end
location \𝑎𝑡(y, 1) = 1 2 (left) end

location
∃𝑎 ∶ 𝑎 ∈ {0, 1}
𝑖 = \𝑎𝑡(x, 𝑎) 1 (right) end

location

∃𝑎, 𝑏 ∶ 𝑎, 𝑏 ∈ {0, 1}
𝑗 = \𝑎𝑡(y, 𝑎)
𝑖 = \𝑎𝑡(x, 𝑏)

𝑏 = 1 ⟹ 𝑎 = 1

2 (right) end

location ¬(𝑖 = 1 ∧ 𝑗 = 0) 2 (right) end

x ∶= 0,y ∶= 0
x ∶= 1 𝑖 ∶= y
y ∶= 1 𝑗 ∶= x

¬(𝑖 = 1 ∧ 𝑗 = 0)

SC
All instructions execute in-order

Safe (inconsistent)

▶ state labels are symbolic integers, and denote ordering of memory events.

Where do invariants come from?

Challenges (and Solutions) in Memory-Model-Aware Verification 5 AVM’24, Freiburg

Witnesses for Correctness
invariant type value line column

location \𝑎𝑡(x, 0) = 0 0 middle
location \𝑎𝑡(y, 0) = 0 0 end
location \𝑎𝑡(x, 1) = 1 1 (left) end
location \𝑎𝑡(y, 1) = 1 2 (left) end

location
∃𝑎 ∶ 𝑎 ∈ {0, 1}
𝑖 = \𝑎𝑡(x, 𝑎) 1 (right) end

location

∃𝑎, 𝑏 ∶ 𝑎, 𝑏 ∈ {0, 1}
𝑗 = \𝑎𝑡(y, 𝑎)
𝑖 = \𝑎𝑡(x, 𝑏)

𝑏 = 1 ⟹ 𝑎 = 1

2 (right) end

location ¬(𝑖 = 1 ∧ 𝑗 = 0) 2 (right) end

x ∶= 0,y ∶= 0
x ∶= 1 𝑖 ∶= y
y ∶= 1 𝑗 ∶= x

¬(𝑖 = 1 ∧ 𝑗 = 0)

SC
All instructions execute in-order

Safe (inconsistent)

▶ state labels are symbolic integers, and denote ordering of memory events.

Where do invariants come from?

Challenges (and Solutions) in Memory-Model-Aware Verification 5 AVM’24, Freiburg

Witnesses for Correctness
invariant type value line column

location \𝑎𝑡(x, 0) = 0 0 middle
location \𝑎𝑡(y, 0) = 0 0 end
location \𝑎𝑡(x, 1) = 1 1 (left) end
location \𝑎𝑡(y, 1) = 1 2 (left) end

location
∃𝑎 ∶ 𝑎 ∈ {0, 1}
𝑖 = \𝑎𝑡(x, 𝑎) 1 (right) end

location

∃𝑎, 𝑏 ∶ 𝑎, 𝑏 ∈ {0, 1}
𝑗 = \𝑎𝑡(y, 𝑎)
𝑖 = \𝑎𝑡(x, 𝑏)

𝑏 = 1 ⟹ 𝑎 = 1

2 (right) end

location ¬(𝑖 = 1 ∧ 𝑗 = 0) 2 (right) end

x ∶= 0,y ∶= 0
x ∶= 1 𝑖 ∶= y
y ∶= 1 𝑗 ∶= x

¬(𝑖 = 1 ∧ 𝑗 = 0)

SC
All instructions execute in-order

Safe (inconsistent)

▶ state labels are symbolic integers, and denote ordering of memory events.

Where do invariants come from?

Challenges (and Solutions) in Memory-Model-Aware Verification 5 AVM’24, Freiburg

Witnesses for Correctness
invariant type value line column

location \𝑎𝑡(x, 0) = 0 0 middle
location \𝑎𝑡(y, 0) = 0 0 end
location \𝑎𝑡(x, 1) = 1 1 (left) end
location \𝑎𝑡(y, 1) = 1 2 (left) end

location
∃𝑎 ∶ 𝑎 ∈ {0, 1}
𝑖 = \𝑎𝑡(x, 𝑎) 1 (right) end

location

∃𝑎, 𝑏 ∶ 𝑎, 𝑏 ∈ {0, 1}
𝑗 = \𝑎𝑡(y, 𝑎)
𝑖 = \𝑎𝑡(x, 𝑏)

𝑏 = 1 ⟹ 𝑎 = 1

2 (right) end

location ¬(𝑖 = 1 ∧ 𝑗 = 0) 2 (right) end

x ∶= 0,y ∶= 0
x ∶= 1 𝑖 ∶= y
y ∶= 1 𝑗 ∶= x

¬(𝑖 = 1 ∧ 𝑗 = 0)

SC
All instructions execute in-order

Safe (inconsistent)

▶ state labels are symbolic integers, and denote ordering of memory events.

Where do invariants come from?

Challenges (and Solutions) in Memory-Model-Aware Verification 5 AVM’24, Freiburg

Witnesses for Correctness
invariant type value line column

location \𝑎𝑡(x, 0) = 0 0 middle
location \𝑎𝑡(y, 0) = 0 0 end
location \𝑎𝑡(x, 1) = 1 1 (left) end
location \𝑎𝑡(y, 1) = 1 2 (left) end

location
∃𝑎 ∶ 𝑎 ∈ {0, 1}
𝑖 = \𝑎𝑡(x, 𝑎) 1 (right) end

location

∃𝑎, 𝑏 ∶ 𝑎, 𝑏 ∈ {0, 1}
𝑗 = \𝑎𝑡(y, 𝑎)
𝑖 = \𝑎𝑡(x, 𝑏)

𝑏 = 1 ⟹ 𝑎 = 1

2 (right) end

location ¬(𝑖 = 1 ∧ 𝑗 = 0) 2 (right) end

x ∶= 0,y ∶= 0
x ∶= 1 𝑖 ∶= y
y ∶= 1 𝑗 ∶= x

¬(𝑖 = 1 ∧ 𝑗 = 0)

SC
All instructions execute in-order

Safe (inconsistent)

▶ state labels are symbolic integers, and denote ordering of memory events.

Where do invariants come from?

Challenges (and Solutions) in Memory-Model-Aware Verification 5 AVM’24, Freiburg

CHC Crash Course

L0

L1

L2

Lf Le

𝑥 ∶= 0

else

[𝑥 == 5] else

[𝑥 <= 5]
𝑥 ∶= 𝑥 + 1

i n t x = 0;
while (x <= 5)

x++;
assert (x == 5) ;

TARGET(𝑣𝑎𝑟𝑠′) ⟵ SRC(𝑣𝑎𝑟𝑠) ∧ 𝑒𝑑𝑔𝑒(𝑣𝑎𝑟𝑠, 𝑣𝑎𝑟𝑠′)

𝐿0(𝑥) ⟵ ⊤
∀𝑥 ∶ 𝐿0(𝑥)

𝐿1(𝑥′) ⟵ 𝐿0(𝑥) ∧ 𝑥′ = 0
𝐿1(0)

𝐿1(𝑥′) ⟵ 𝐿1(𝑥) ∧ 𝑥 ≤ 5 ∧ 𝑥′ = 𝑥 + 1
𝐿2(1), 𝐿1(2), 𝐿1(3), 𝐿1(4), 𝐿1(5), 𝐿1(6)

𝐿2(𝑥) ⟵ 𝐿1(𝑥) ∧ !(𝑥 ≤ 5)
𝐿2(6)

⊥ ⟵ 𝐿2(𝑥) ∧ !(𝑥 = 5)

Challenges (and Solutions) in Memory-Model-Aware Verification 6 AVM’24, Freiburg

CHC Crash Course

L0

L1

L2

Lf Le

𝑥 ∶= 0

else

[𝑥 == 5] else

[𝑥 <= 5]
𝑥 ∶= 𝑥 + 1

i n t x = 0;
while (x <= 5)

x++;
assert (x == 5) ;

TARGET(𝑣𝑎𝑟𝑠′) ⟵ SRC(𝑣𝑎𝑟𝑠) ∧ 𝑒𝑑𝑔𝑒(𝑣𝑎𝑟𝑠, 𝑣𝑎𝑟𝑠′)

𝐿0(𝑥) ⟵ ⊤
∀𝑥 ∶ 𝐿0(𝑥)

𝐿1(𝑥′) ⟵ 𝐿0(𝑥) ∧ 𝑥′ = 0
𝐿1(0)

𝐿1(𝑥′) ⟵ 𝐿1(𝑥) ∧ 𝑥 ≤ 5 ∧ 𝑥′ = 𝑥 + 1
𝐿2(1), 𝐿1(2), 𝐿1(3), 𝐿1(4), 𝐿1(5), 𝐿1(6)

𝐿2(𝑥) ⟵ 𝐿1(𝑥) ∧ !(𝑥 ≤ 5)
𝐿2(6)

⊥ ⟵ 𝐿2(𝑥) ∧ !(𝑥 = 5)

Challenges (and Solutions) in Memory-Model-Aware Verification 6 AVM’24, Freiburg

CHC Crash Course

L0

L1

L2

Lf Le

𝑥 ∶= 0

else

[𝑥 == 5] else

[𝑥 <= 5]
𝑥 ∶= 𝑥 + 1

i n t x = 0;
while (x <= 5)

x++;
assert (x == 5) ;

TARGET(𝑣𝑎𝑟𝑠′) ⟵ SRC(𝑣𝑎𝑟𝑠) ∧ 𝑒𝑑𝑔𝑒(𝑣𝑎𝑟𝑠, 𝑣𝑎𝑟𝑠′)

𝐿0(𝑥) ⟵ ⊤

∀𝑥 ∶ 𝐿0(𝑥)
𝐿1(𝑥′) ⟵ 𝐿0(𝑥) ∧ 𝑥′ = 0

𝐿1(0)
𝐿1(𝑥′) ⟵ 𝐿1(𝑥) ∧ 𝑥 ≤ 5 ∧ 𝑥′ = 𝑥 + 1

𝐿2(1), 𝐿1(2), 𝐿1(3), 𝐿1(4), 𝐿1(5), 𝐿1(6)
𝐿2(𝑥) ⟵ 𝐿1(𝑥) ∧ !(𝑥 ≤ 5)

𝐿2(6)
⊥ ⟵ 𝐿2(𝑥) ∧ !(𝑥 = 5)

Challenges (and Solutions) in Memory-Model-Aware Verification 6 AVM’24, Freiburg

CHC Crash Course

L0

L1

L2

Lf Le

𝑥 ∶= 0

else

[𝑥 == 5] else

[𝑥 <= 5]
𝑥 ∶= 𝑥 + 1

i n t x = 0;
while (x <= 5)

x++;
assert (x == 5) ;

TARGET(𝑣𝑎𝑟𝑠′) ⟵ SRC(𝑣𝑎𝑟𝑠) ∧ 𝑒𝑑𝑔𝑒(𝑣𝑎𝑟𝑠, 𝑣𝑎𝑟𝑠′)

𝐿0(𝑥) ⟵ ⊤
∀𝑥 ∶ 𝐿0(𝑥)

𝐿1(𝑥′) ⟵ 𝐿0(𝑥) ∧ 𝑥′ = 0
𝐿1(0)

𝐿1(𝑥′) ⟵ 𝐿1(𝑥) ∧ 𝑥 ≤ 5 ∧ 𝑥′ = 𝑥 + 1
𝐿2(1), 𝐿1(2), 𝐿1(3), 𝐿1(4), 𝐿1(5), 𝐿1(6)

𝐿2(𝑥) ⟵ 𝐿1(𝑥) ∧ !(𝑥 ≤ 5)
𝐿2(6)

⊥ ⟵ 𝐿2(𝑥) ∧ !(𝑥 = 5)

Challenges (and Solutions) in Memory-Model-Aware Verification 6 AVM’24, Freiburg

CHC Crash Course

L0

L1

L2

Lf Le

𝑥 ∶= 0

else

[𝑥 == 5] else

[𝑥 <= 5]
𝑥 ∶= 𝑥 + 1

i n t x = 0;
while (x <= 5)

x++;
assert (x == 5) ;

TARGET(𝑣𝑎𝑟𝑠′) ⟵ SRC(𝑣𝑎𝑟𝑠) ∧ 𝑒𝑑𝑔𝑒(𝑣𝑎𝑟𝑠, 𝑣𝑎𝑟𝑠′)

𝐿0(𝑥) ⟵ ⊤
∀𝑥 ∶ 𝐿0(𝑥)

𝐿1(𝑥′) ⟵ 𝐿0(𝑥) ∧ 𝑥′ = 0

𝐿1(0)
𝐿1(𝑥′) ⟵ 𝐿1(𝑥) ∧ 𝑥 ≤ 5 ∧ 𝑥′ = 𝑥 + 1

𝐿2(1), 𝐿1(2), 𝐿1(3), 𝐿1(4), 𝐿1(5), 𝐿1(6)
𝐿2(𝑥) ⟵ 𝐿1(𝑥) ∧ !(𝑥 ≤ 5)

𝐿2(6)
⊥ ⟵ 𝐿2(𝑥) ∧ !(𝑥 = 5)

Challenges (and Solutions) in Memory-Model-Aware Verification 6 AVM’24, Freiburg

CHC Crash Course

L0

L1

L2

Lf Le

𝑥 ∶= 0

else

[𝑥 == 5] else

[𝑥 <= 5]
𝑥 ∶= 𝑥 + 1

i n t x = 0;
while (x <= 5)

x++;
assert (x == 5) ;

TARGET(𝑣𝑎𝑟𝑠′) ⟵ SRC(𝑣𝑎𝑟𝑠) ∧ 𝑒𝑑𝑔𝑒(𝑣𝑎𝑟𝑠, 𝑣𝑎𝑟𝑠′)

𝐿0(𝑥) ⟵ ⊤
∀𝑥 ∶ 𝐿0(𝑥)

𝐿1(𝑥′) ⟵ 𝐿0(𝑥) ∧ 𝑥′ = 0
𝐿1(0)

𝐿1(𝑥′) ⟵ 𝐿1(𝑥) ∧ 𝑥 ≤ 5 ∧ 𝑥′ = 𝑥 + 1
𝐿2(1), 𝐿1(2), 𝐿1(3), 𝐿1(4), 𝐿1(5), 𝐿1(6)

𝐿2(𝑥) ⟵ 𝐿1(𝑥) ∧ !(𝑥 ≤ 5)
𝐿2(6)

⊥ ⟵ 𝐿2(𝑥) ∧ !(𝑥 = 5)

Challenges (and Solutions) in Memory-Model-Aware Verification 6 AVM’24, Freiburg

CHC Crash Course

L0

L1

L2

Lf Le

𝑥 ∶= 0

else

[𝑥 == 5] else

[𝑥 <= 5]
𝑥 ∶= 𝑥 + 1

i n t x = 0;
while (x <= 5)

x++;
assert (x == 5) ;

TARGET(𝑣𝑎𝑟𝑠′) ⟵ SRC(𝑣𝑎𝑟𝑠) ∧ 𝑒𝑑𝑔𝑒(𝑣𝑎𝑟𝑠, 𝑣𝑎𝑟𝑠′)

𝐿0(𝑥) ⟵ ⊤
∀𝑥 ∶ 𝐿0(𝑥)

𝐿1(𝑥′) ⟵ 𝐿0(𝑥) ∧ 𝑥′ = 0
𝐿1(0)

𝐿1(𝑥′) ⟵ 𝐿1(𝑥) ∧ 𝑥 ≤ 5 ∧ 𝑥′ = 𝑥 + 1

𝐿2(1), 𝐿1(2), 𝐿1(3), 𝐿1(4), 𝐿1(5), 𝐿1(6)
𝐿2(𝑥) ⟵ 𝐿1(𝑥) ∧ !(𝑥 ≤ 5)

𝐿2(6)
⊥ ⟵ 𝐿2(𝑥) ∧ !(𝑥 = 5)

Challenges (and Solutions) in Memory-Model-Aware Verification 6 AVM’24, Freiburg

CHC Crash Course

L0

L1

L2

Lf Le

𝑥 ∶= 0

else

[𝑥 == 5] else

[𝑥 <= 5]
𝑥 ∶= 𝑥 + 1

i n t x = 0;
while (x <= 5)

x++;
assert (x == 5) ;

TARGET(𝑣𝑎𝑟𝑠′) ⟵ SRC(𝑣𝑎𝑟𝑠) ∧ 𝑒𝑑𝑔𝑒(𝑣𝑎𝑟𝑠, 𝑣𝑎𝑟𝑠′)

𝐿0(𝑥) ⟵ ⊤
∀𝑥 ∶ 𝐿0(𝑥)

𝐿1(𝑥′) ⟵ 𝐿0(𝑥) ∧ 𝑥′ = 0
𝐿1(0)

𝐿1(𝑥′) ⟵ 𝐿1(𝑥) ∧ 𝑥 ≤ 5 ∧ 𝑥′ = 𝑥 + 1
𝐿2(1),

𝐿1(2), 𝐿1(3), 𝐿1(4), 𝐿1(5), 𝐿1(6)
𝐿2(𝑥) ⟵ 𝐿1(𝑥) ∧ !(𝑥 ≤ 5)

𝐿2(6)
⊥ ⟵ 𝐿2(𝑥) ∧ !(𝑥 = 5)

Challenges (and Solutions) in Memory-Model-Aware Verification 6 AVM’24, Freiburg

CHC Crash Course

L0

L1

L2

Lf Le

𝑥 ∶= 0

else

[𝑥 == 5] else

[𝑥 <= 5]
𝑥 ∶= 𝑥 + 1

i n t x = 0;
while (x <= 5)

x++;
assert (x == 5) ;

TARGET(𝑣𝑎𝑟𝑠′) ⟵ SRC(𝑣𝑎𝑟𝑠) ∧ 𝑒𝑑𝑔𝑒(𝑣𝑎𝑟𝑠, 𝑣𝑎𝑟𝑠′)

𝐿0(𝑥) ⟵ ⊤
∀𝑥 ∶ 𝐿0(𝑥)

𝐿1(𝑥′) ⟵ 𝐿0(𝑥) ∧ 𝑥′ = 0
𝐿1(0)

𝐿1(𝑥′) ⟵ 𝐿1(𝑥) ∧ 𝑥 ≤ 5 ∧ 𝑥′ = 𝑥 + 1
𝐿2(1), 𝐿1(2),

𝐿1(3), 𝐿1(4), 𝐿1(5), 𝐿1(6)
𝐿2(𝑥) ⟵ 𝐿1(𝑥) ∧ !(𝑥 ≤ 5)

𝐿2(6)
⊥ ⟵ 𝐿2(𝑥) ∧ !(𝑥 = 5)

Challenges (and Solutions) in Memory-Model-Aware Verification 6 AVM’24, Freiburg

CHC Crash Course

L0

L1

L2

Lf Le

𝑥 ∶= 0

else

[𝑥 == 5] else

[𝑥 <= 5]
𝑥 ∶= 𝑥 + 1

i n t x = 0;
while (x <= 5)

x++;
assert (x == 5) ;

TARGET(𝑣𝑎𝑟𝑠′) ⟵ SRC(𝑣𝑎𝑟𝑠) ∧ 𝑒𝑑𝑔𝑒(𝑣𝑎𝑟𝑠, 𝑣𝑎𝑟𝑠′)

𝐿0(𝑥) ⟵ ⊤
∀𝑥 ∶ 𝐿0(𝑥)

𝐿1(𝑥′) ⟵ 𝐿0(𝑥) ∧ 𝑥′ = 0
𝐿1(0)

𝐿1(𝑥′) ⟵ 𝐿1(𝑥) ∧ 𝑥 ≤ 5 ∧ 𝑥′ = 𝑥 + 1
𝐿2(1), 𝐿1(2), 𝐿1(3),

𝐿1(4), 𝐿1(5), 𝐿1(6)
𝐿2(𝑥) ⟵ 𝐿1(𝑥) ∧ !(𝑥 ≤ 5)

𝐿2(6)
⊥ ⟵ 𝐿2(𝑥) ∧ !(𝑥 = 5)

Challenges (and Solutions) in Memory-Model-Aware Verification 6 AVM’24, Freiburg

CHC Crash Course

L0

L1

L2

Lf Le

𝑥 ∶= 0

else

[𝑥 == 5] else

[𝑥 <= 5]
𝑥 ∶= 𝑥 + 1

i n t x = 0;
while (x <= 5)

x++;
assert (x == 5) ;

TARGET(𝑣𝑎𝑟𝑠′) ⟵ SRC(𝑣𝑎𝑟𝑠) ∧ 𝑒𝑑𝑔𝑒(𝑣𝑎𝑟𝑠, 𝑣𝑎𝑟𝑠′)

𝐿0(𝑥) ⟵ ⊤
∀𝑥 ∶ 𝐿0(𝑥)

𝐿1(𝑥′) ⟵ 𝐿0(𝑥) ∧ 𝑥′ = 0
𝐿1(0)

𝐿1(𝑥′) ⟵ 𝐿1(𝑥) ∧ 𝑥 ≤ 5 ∧ 𝑥′ = 𝑥 + 1
𝐿2(1), 𝐿1(2), 𝐿1(3), 𝐿1(4),

𝐿1(5), 𝐿1(6)
𝐿2(𝑥) ⟵ 𝐿1(𝑥) ∧ !(𝑥 ≤ 5)

𝐿2(6)
⊥ ⟵ 𝐿2(𝑥) ∧ !(𝑥 = 5)

Challenges (and Solutions) in Memory-Model-Aware Verification 6 AVM’24, Freiburg

CHC Crash Course

L0

L1

L2

Lf Le

𝑥 ∶= 0

else

[𝑥 == 5] else

[𝑥 <= 5]
𝑥 ∶= 𝑥 + 1

i n t x = 0;
while (x <= 5)

x++;
assert (x == 5) ;

TARGET(𝑣𝑎𝑟𝑠′) ⟵ SRC(𝑣𝑎𝑟𝑠) ∧ 𝑒𝑑𝑔𝑒(𝑣𝑎𝑟𝑠, 𝑣𝑎𝑟𝑠′)

𝐿0(𝑥) ⟵ ⊤
∀𝑥 ∶ 𝐿0(𝑥)

𝐿1(𝑥′) ⟵ 𝐿0(𝑥) ∧ 𝑥′ = 0
𝐿1(0)

𝐿1(𝑥′) ⟵ 𝐿1(𝑥) ∧ 𝑥 ≤ 5 ∧ 𝑥′ = 𝑥 + 1
𝐿2(1), 𝐿1(2), 𝐿1(3), 𝐿1(4), 𝐿1(5),

𝐿1(6)
𝐿2(𝑥) ⟵ 𝐿1(𝑥) ∧ !(𝑥 ≤ 5)

𝐿2(6)
⊥ ⟵ 𝐿2(𝑥) ∧ !(𝑥 = 5)

Challenges (and Solutions) in Memory-Model-Aware Verification 6 AVM’24, Freiburg

CHC Crash Course

L0

L1

L2

Lf Le

𝑥 ∶= 0

else

[𝑥 == 5] else

[𝑥 <= 5]
𝑥 ∶= 𝑥 + 1

i n t x = 0;
while (x <= 5)

x++;
assert (x == 5) ;

TARGET(𝑣𝑎𝑟𝑠′) ⟵ SRC(𝑣𝑎𝑟𝑠) ∧ 𝑒𝑑𝑔𝑒(𝑣𝑎𝑟𝑠, 𝑣𝑎𝑟𝑠′)

𝐿0(𝑥) ⟵ ⊤
∀𝑥 ∶ 𝐿0(𝑥)

𝐿1(𝑥′) ⟵ 𝐿0(𝑥) ∧ 𝑥′ = 0
𝐿1(0)

𝐿1(𝑥′) ⟵ 𝐿1(𝑥) ∧ 𝑥 ≤ 5 ∧ 𝑥′ = 𝑥 + 1
𝐿2(1), 𝐿1(2), 𝐿1(3), 𝐿1(4), 𝐿1(5), 𝐿1(6)

𝐿2(𝑥) ⟵ 𝐿1(𝑥) ∧ !(𝑥 ≤ 5)
𝐿2(6)

⊥ ⟵ 𝐿2(𝑥) ∧ !(𝑥 = 5)

Challenges (and Solutions) in Memory-Model-Aware Verification 6 AVM’24, Freiburg

CHC Crash Course

L0

L1

L2

Lf Le

𝑥 ∶= 0

else

[𝑥 == 5] else

[𝑥 <= 5]
𝑥 ∶= 𝑥 + 1

i n t x = 0;
while (x <= 5)

x++;
assert (x == 5) ;

TARGET(𝑣𝑎𝑟𝑠′) ⟵ SRC(𝑣𝑎𝑟𝑠) ∧ 𝑒𝑑𝑔𝑒(𝑣𝑎𝑟𝑠, 𝑣𝑎𝑟𝑠′)

𝐿0(𝑥) ⟵ ⊤
∀𝑥 ∶ 𝐿0(𝑥)

𝐿1(𝑥′) ⟵ 𝐿0(𝑥) ∧ 𝑥′ = 0
𝐿1(0)

𝐿1(𝑥′) ⟵ 𝐿1(𝑥) ∧ 𝑥 ≤ 5 ∧ 𝑥′ = 𝑥 + 1
𝐿2(1), 𝐿1(2), 𝐿1(3), 𝐿1(4), 𝐿1(5), 𝐿1(6)

𝐿2(𝑥) ⟵ 𝐿1(𝑥) ∧ !(𝑥 ≤ 5)

𝐿2(6)
⊥ ⟵ 𝐿2(𝑥) ∧ !(𝑥 = 5)

Challenges (and Solutions) in Memory-Model-Aware Verification 6 AVM’24, Freiburg

CHC Crash Course

L0

L1

L2

Lf Le

𝑥 ∶= 0

else

[𝑥 == 5] else

[𝑥 <= 5]
𝑥 ∶= 𝑥 + 1

i n t x = 0;
while (x <= 5)

x++;
assert (x == 5) ;

TARGET(𝑣𝑎𝑟𝑠′) ⟵ SRC(𝑣𝑎𝑟𝑠) ∧ 𝑒𝑑𝑔𝑒(𝑣𝑎𝑟𝑠, 𝑣𝑎𝑟𝑠′)

𝐿0(𝑥) ⟵ ⊤
∀𝑥 ∶ 𝐿0(𝑥)

𝐿1(𝑥′) ⟵ 𝐿0(𝑥) ∧ 𝑥′ = 0
𝐿1(0)

𝐿1(𝑥′) ⟵ 𝐿1(𝑥) ∧ 𝑥 ≤ 5 ∧ 𝑥′ = 𝑥 + 1
𝐿2(1), 𝐿1(2), 𝐿1(3), 𝐿1(4), 𝐿1(5), 𝐿1(6)

𝐿2(𝑥) ⟵ 𝐿1(𝑥) ∧ !(𝑥 ≤ 5)
𝐿2(6)

⊥ ⟵ 𝐿2(𝑥) ∧ !(𝑥 = 5)

Challenges (and Solutions) in Memory-Model-Aware Verification 6 AVM’24, Freiburg

CHC Crash Course

L0

L1

L2

Lf Le

𝑥 ∶= 0

else

[𝑥 == 5] else

[𝑥 <= 5]
𝑥 ∶= 𝑥 + 1

i n t x = 0;
while (x <= 5)

x++;
assert (x == 5) ;

TARGET(𝑣𝑎𝑟𝑠′) ⟵ SRC(𝑣𝑎𝑟𝑠) ∧ 𝑒𝑑𝑔𝑒(𝑣𝑎𝑟𝑠, 𝑣𝑎𝑟𝑠′)

𝐿0(𝑥) ⟵ ⊤
∀𝑥 ∶ 𝐿0(𝑥)

𝐿1(𝑥′) ⟵ 𝐿0(𝑥) ∧ 𝑥′ = 0
𝐿1(0)

𝐿1(𝑥′) ⟵ 𝐿1(𝑥) ∧ 𝑥 ≤ 5 ∧ 𝑥′ = 𝑥 + 1
𝐿2(1), 𝐿1(2), 𝐿1(3), 𝐿1(4), 𝐿1(5), 𝐿1(6)

𝐿2(𝑥) ⟵ 𝐿1(𝑥) ∧ !(𝑥 ≤ 5)
𝐿2(6)

⊥ ⟵ 𝐿2(𝑥) ∧ !(𝑥 = 5)

Challenges (and Solutions) in Memory-Model-Aware Verification 6 AVM’24, Freiburg

Constrained Horn Clauses for Weak Memory (Level 1)

flag0 ∶= 0, flag1 ∶= 0, turn ∶= 0, cnt ∶= 0
𝐿0 flag0 ∶= 1 flag1 ∶= 1
𝐿1 turn ∶= 1 turn ∶= 0

do { do {
𝐿2 𝑎 ∶= flag1 𝑎 ∶= flag0
𝐿3 𝑏 ∶= turn 𝑏 ∶= turn
𝐿4 }while(𝑎 ∧ 𝑏) }while(𝑎 ∧ ¬𝑏)
𝐶0 𝑐 ∶= cnt 𝑐 ∶= cnt
𝐶1 cnt ∶= 𝑐 + 1 cnt ∶= 𝑐 + 1
𝐶2 cnt ∶= 0 cnt ∶= 0
𝐿5 flag0 ∶= 0 flag1 ∶= 0

▶ Encode threads independently
▶ Write: NOP
▶ Read: havoc

𝐿𝑇0
0 (𝑎, 𝑏, 𝑐) ⟵ ⊤ //init

𝐿𝑇0
1 (𝑎, 𝑏, 𝑐) ⟵ 𝐿𝑇0

0 (𝑎, 𝑏, 𝑐) //skip
𝐿𝑇0

2 (𝑎, 𝑏, 𝑐) ⟵ 𝐿𝑇0
1 (𝑎, 𝑏, 𝑐) //skip

𝐿𝑇0
3 (𝑎′, 𝑏, 𝑐) ⟵ 𝐿𝑇0

2 (𝑎, 𝑏, 𝑐) //havoc a
…

𝐿𝑇0
0 (𝑎, 𝑏, 𝑐) ⟵ 𝐿𝑇0

5 (𝑎, 𝑏, 𝑐) //repeat
⊥ ⟵ 𝐶𝑇0

1 (𝑎, 𝑏, 𝑐)∧
¬(𝑐 = 0) //error

SAT: There is a safety proof. UNSAT: May be a counterexample.

Challenges (and Solutions) in Memory-Model-Aware Verification 7 AVM’24, Freiburg

Constrained Horn Clauses for Weak Memory (Level 1)

flag0 ∶= 0, flag1 ∶= 0, turn ∶= 0, cnt ∶= 0
𝐿0 flag0 ∶= 1 flag1 ∶= 1
𝐿1 turn ∶= 1 turn ∶= 0

do { do {
𝐿2 𝑎 ∶= flag1 𝑎 ∶= flag0
𝐿3 𝑏 ∶= turn 𝑏 ∶= turn
𝐿4 }while(𝑎 ∧ 𝑏) }while(𝑎 ∧ ¬𝑏)
𝐶0 𝑐 ∶= cnt 𝑐 ∶= cnt
𝐶1 cnt ∶= 𝑐 + 1 cnt ∶= 𝑐 + 1
𝐶2 cnt ∶= 0 cnt ∶= 0
𝐿5 flag0 ∶= 0 flag1 ∶= 0

▶ Encode threads independently
▶ Write: NOP
▶ Read: havoc

𝐿𝑇0
0 (𝑎, 𝑏, 𝑐) ⟵ ⊤ //init

𝐿𝑇0
1 (𝑎, 𝑏, 𝑐) ⟵ 𝐿𝑇0

0 (𝑎, 𝑏, 𝑐) //skip
𝐿𝑇0

2 (𝑎, 𝑏, 𝑐) ⟵ 𝐿𝑇0
1 (𝑎, 𝑏, 𝑐) //skip

𝐿𝑇0
3 (𝑎′, 𝑏, 𝑐) ⟵ 𝐿𝑇0

2 (𝑎, 𝑏, 𝑐) //havoc a
…

𝐿𝑇0
0 (𝑎, 𝑏, 𝑐) ⟵ 𝐿𝑇0

5 (𝑎, 𝑏, 𝑐) //repeat
⊥ ⟵ 𝐶𝑇0

1 (𝑎, 𝑏, 𝑐)∧
¬(𝑐 = 0) //error

SAT: There is a safety proof. UNSAT: May be a counterexample.

Challenges (and Solutions) in Memory-Model-Aware Verification 7 AVM’24, Freiburg

Constrained Horn Clauses for Weak Memory (Level 1)

flag0 ∶= 0, flag1 ∶= 0, turn ∶= 0, cnt ∶= 0
𝐿0 flag0 ∶= 1 flag1 ∶= 1
𝐿1 turn ∶= 1 turn ∶= 0

do { do {
𝐿2 𝑎 ∶= flag1 𝑎 ∶= flag0
𝐿3 𝑏 ∶= turn 𝑏 ∶= turn
𝐿4 }while(𝑎 ∧ 𝑏) }while(𝑎 ∧ ¬𝑏)
𝐶0 𝑐 ∶= cnt 𝑐 ∶= cnt
𝐶1 cnt ∶= 𝑐 + 1 cnt ∶= 𝑐 + 1
𝐶2 cnt ∶= 0 cnt ∶= 0
𝐿5 flag0 ∶= 0 flag1 ∶= 0

▶ Encode threads independently
▶ Write: NOP
▶ Read: havoc

𝐿𝑇0
0 (𝑎, 𝑏, 𝑐) ⟵ ⊤ //init

𝐿𝑇0
1 (𝑎, 𝑏, 𝑐) ⟵ 𝐿𝑇0

0 (𝑎, 𝑏, 𝑐) //skip
𝐿𝑇0

2 (𝑎, 𝑏, 𝑐) ⟵ 𝐿𝑇0
1 (𝑎, 𝑏, 𝑐) //skip

𝐿𝑇0
3 (𝑎′, 𝑏, 𝑐) ⟵ 𝐿𝑇0

2 (𝑎, 𝑏, 𝑐) //havoc a
…

𝐿𝑇0
0 (𝑎, 𝑏, 𝑐) ⟵ 𝐿𝑇0

5 (𝑎, 𝑏, 𝑐) //repeat
⊥ ⟵ 𝐶𝑇0

1 (𝑎, 𝑏, 𝑐)∧
¬(𝑐 = 0) //error

SAT: There is a safety proof. UNSAT: May be a counterexample.

Challenges (and Solutions) in Memory-Model-Aware Verification 7 AVM’24, Freiburg

Constrained Horn Clauses for Weak Memory (Level 1)

flag0 ∶= 0, flag1 ∶= 0, turn ∶= 0, cnt ∶= 0
𝐿0 flag0 ∶= 1 flag1 ∶= 1
𝐿1 turn ∶= 1 turn ∶= 0

do { do {
𝐿2 𝑎 ∶= flag1 𝑎 ∶= flag0
𝐿3 𝑏 ∶= turn 𝑏 ∶= turn
𝐿4 }while(𝑎 ∧ 𝑏) }while(𝑎 ∧ ¬𝑏)
𝐶0 𝑐 ∶= cnt 𝑐 ∶= cnt
𝐶1 cnt ∶= 𝑐 + 1 cnt ∶= 𝑐 + 1
𝐶2 cnt ∶= 0 cnt ∶= 0
𝐿5 flag0 ∶= 0 flag1 ∶= 0

▶ Encode threads independently
▶ Write: NOP
▶ Read: havoc

𝐿𝑇0
0 (𝑎, 𝑏, 𝑐) ⟵ ⊤ //init

𝐿𝑇0
1 (𝑎, 𝑏, 𝑐) ⟵ 𝐿𝑇0

0 (𝑎, 𝑏, 𝑐) //skip
𝐿𝑇0

2 (𝑎, 𝑏, 𝑐) ⟵ 𝐿𝑇0
1 (𝑎, 𝑏, 𝑐) //skip

𝐿𝑇0
3 (𝑎′, 𝑏, 𝑐) ⟵ 𝐿𝑇0

2 (𝑎, 𝑏, 𝑐) //havoc a
…

𝐿𝑇0
0 (𝑎, 𝑏, 𝑐) ⟵ 𝐿𝑇0

5 (𝑎, 𝑏, 𝑐) //repeat
⊥ ⟵ 𝐶𝑇0

1 (𝑎, 𝑏, 𝑐)∧
¬(𝑐 = 0) //error

SAT: There is a safety proof.

UNSAT: May be a counterexample.

Challenges (and Solutions) in Memory-Model-Aware Verification 7 AVM’24, Freiburg

Constrained Horn Clauses for Weak Memory (Level 1)

flag0 ∶= 0, flag1 ∶= 0, turn ∶= 0, cnt ∶= 0
𝐿0 flag0 ∶= 1 flag1 ∶= 1
𝐿1 turn ∶= 1 turn ∶= 0

do { do {
𝐿2 𝑎 ∶= flag1 𝑎 ∶= flag0
𝐿3 𝑏 ∶= turn 𝑏 ∶= turn
𝐿4 }while(𝑎 ∧ 𝑏) }while(𝑎 ∧ ¬𝑏)
𝐶0 𝑐 ∶= cnt 𝑐 ∶= cnt
𝐶1 cnt ∶= 𝑐 + 1 cnt ∶= 𝑐 + 1
𝐶2 cnt ∶= 0 cnt ∶= 0
𝐿5 flag0 ∶= 0 flag1 ∶= 0

▶ Encode threads independently
▶ Write: NOP
▶ Read: havoc

𝐿𝑇0
0 (𝑎, 𝑏, 𝑐) ⟵ ⊤ //init

𝐿𝑇0
1 (𝑎, 𝑏, 𝑐) ⟵ 𝐿𝑇0

0 (𝑎, 𝑏, 𝑐) //skip
𝐿𝑇0

2 (𝑎, 𝑏, 𝑐) ⟵ 𝐿𝑇0
1 (𝑎, 𝑏, 𝑐) //skip

𝐿𝑇0
3 (𝑎′, 𝑏, 𝑐) ⟵ 𝐿𝑇0

2 (𝑎, 𝑏, 𝑐) //havoc a
…

𝐿𝑇0
0 (𝑎, 𝑏, 𝑐) ⟵ 𝐿𝑇0

5 (𝑎, 𝑏, 𝑐) //repeat
⊥ ⟵ 𝐶𝑇0

1 (𝑎, 𝑏, 𝑐)∧
¬(𝑐 = 0) //error

SAT: There is a safety proof. UNSAT: May be a counterexample.

Challenges (and Solutions) in Memory-Model-Aware Verification 7 AVM’24, Freiburg

Constrained Horn Clauses for Weak Memory (Level 2)

flag0 ∶= 0, flag1 ∶= 0, turn ∶= 0, cnt ∶= 0
𝐿0 flag0 ∶= 1 flag1 ∶= 1
𝐿1 turn ∶= 1 turn ∶= 0

do { do {
𝐿2 𝑎 ∶= flag1 𝑎 ∶= flag0
𝐿3 𝑏 ∶= turn 𝑏 ∶= turn
𝐿4 }while(𝑎 ∧ 𝑏) }while(𝑎 ∧ ¬𝑏)
𝐶0 𝑐 ∶= cnt 𝑐 ∶= cnt
𝐶1 cnt ∶= 𝑐 + 1 cnt ∶= 𝑐 + 1
𝐶2 cnt ∶= 0 cnt ∶= 0
𝐿5 flag0 ∶= 0 flag1 ∶= 0

▶ No temporal ordering
▶ Write: entails 𝑊(𝑣𝑎𝑟, 𝑣𝑎𝑙𝑢𝑒)
▶ Read: asserts 𝑊(𝑣𝑎𝑟, 𝑣𝑎𝑙𝑢𝑒)

𝑊(0, 0) ⟵ 𝐿𝑇0
0 (𝑎, 𝑏, 𝑐)

//flag0 ∶= 1

𝐿𝑇0
4 (𝑎, 𝑏′, 𝑐) ⟵ 𝐿𝑇0

3 (𝑎, 𝑏, 𝑐) ∧ 𝑊(2, 𝑏′)
//𝑏 ∶= turn

SAT: There is a safety proof. UNSAT: May be a counterexample.

Challenges (and Solutions) in Memory-Model-Aware Verification 8 AVM’24, Freiburg

Constrained Horn Clauses for Weak Memory (Level 2)

flag0 ∶= 0, flag1 ∶= 0, turn ∶= 0, cnt ∶= 0
𝐿0 flag0 ∶= 1 flag1 ∶= 1
𝐿1 turn ∶= 1 turn ∶= 0

do { do {
𝐿2 𝑎 ∶= flag1 𝑎 ∶= flag0
𝐿3 𝑏 ∶= turn 𝑏 ∶= turn
𝐿4 }while(𝑎 ∧ 𝑏) }while(𝑎 ∧ ¬𝑏)
𝐶0 𝑐 ∶= cnt 𝑐 ∶= cnt
𝐶1 cnt ∶= 𝑐 + 1 cnt ∶= 𝑐 + 1
𝐶2 cnt ∶= 0 cnt ∶= 0
𝐿5 flag0 ∶= 0 flag1 ∶= 0

▶ No temporal ordering
▶ Write: entails 𝑊(𝑣𝑎𝑟, 𝑣𝑎𝑙𝑢𝑒)
▶ Read: asserts 𝑊(𝑣𝑎𝑟, 𝑣𝑎𝑙𝑢𝑒)

𝑊(0, 0) ⟵ 𝐿𝑇0
0 (𝑎, 𝑏, 𝑐)

//flag0 ∶= 1

𝐿𝑇0
4 (𝑎, 𝑏′, 𝑐) ⟵ 𝐿𝑇0

3 (𝑎, 𝑏, 𝑐) ∧ 𝑊(2, 𝑏′)
//𝑏 ∶= turn

SAT: There is a safety proof. UNSAT: May be a counterexample.

Challenges (and Solutions) in Memory-Model-Aware Verification 8 AVM’24, Freiburg

Constrained Horn Clauses for Weak Memory (Level 3)

flag0 ∶= 0, flag1 ∶= 0, turn ∶= 0, cnt ∶= 0
𝐿0 flag0 ∶= 1 flag1 ∶= 1
𝐿1 turn ∶= 1 turn ∶= 0

do { do {
𝐿2 𝑎 ∶= flag1 𝑎 ∶= flag0
𝐿3 𝑏 ∶= turn 𝑏 ∶= turn
𝐿4 }while(𝑎 ∧ 𝑏) }while(𝑎 ∧ ¬𝑏)
𝐶0 𝑐 ∶= cnt 𝑐 ∶= cnt
𝐶1 cnt ∶= 𝑐 + 1 cnt ∶= 𝑐 + 1
𝐶2 cnt ∶= 0 cnt ∶= 0
𝐿5 flag0 ∶= 0 flag1 ∶= 0

▶ Single temporal ordering
▶ Write: entails 𝑊(𝑣𝑎𝑟, 𝑣𝑎𝑙𝑢𝑒)
▶ Read: asserts 𝑊(𝑣𝑎𝑟, 𝑣𝑎𝑙𝑢𝑒)
▶ Every predicate: ordering metadata

𝑊(≺, ≺co, 0, 0, 0) ⟵ ⊤
𝑙0(≺, ≺co, 1) ⟵ ⊤
𝑊(≺, ≺co, 𝑒, 0, 1) ⟵ 𝑙0(≺, ≺co, 𝑒) ∧

𝑊(≺, ≺co, 𝑒′, 0, _) ∧
≺co [𝑒′] + 1 =≺co [𝑒] ∧
≺ [𝑒′] < ≺ [𝑒]

𝑙1(≺, ≺co, 𝑒) ⟵ 𝑙0(≺, ≺co, 𝑒′) ∧
𝑊(≺, ≺co, 𝑒′, _, _) ∧
𝑒′ + 1 = 𝑒

Challenges (and Solutions) in Memory-Model-Aware Verification 9 AVM’24, Freiburg

Constrained Horn Clauses for Weak Memory (Level 3)

▶ SRC(𝑣𝑎𝑟𝑠) ∧ 𝑒𝑑𝑔𝑒(𝑣𝑎𝑟𝑠, 𝑣𝑎𝑟𝑠′) ⟹ TARGET(𝑣𝑎𝑟𝑠′)
▶ SRC(𝑣𝑎𝑟𝑠,ord) ∧ 𝑒𝑑𝑔𝑒(𝑣𝑎𝑟𝑠, 𝑣𝑎𝑟𝑠′)∧consistent(ord, …) ⟹ T .(𝑣𝑎𝑟𝑠′,ord)

▶ the current edge can be added without causing new inconsistencies

SAT: There is a safety proof. UNSAT: Must be a counterexample.

▶ Proof-of-concept implementation: Github Thorn (Theta + HORN)

▶ Full Peterson example: File-pdf CHCs for Weak MemoryCODE peterson.smt2
Thank you, Gidon!

▶ Witnesses proposal: File-pdf Software Verification Witnesses for Weak Memory
Thank you, Marian!

Challenges (and Solutions) in Memory-Model-Aware Verification 10 AVM’24, Freiburg

https://github.com/ftsrg/theta/
https://leventebajczi.com/publications/fmcad_studentforum24_wm_chc.pdf
https://leventebajczi.com/publications/aux/peterson.smt2
https://leventebajczi.com/publications/fmcad_studentforum24_wm_witness.pdf

Constrained Horn Clauses for Weak Memory (Level 3)

▶ SRC(𝑣𝑎𝑟𝑠) ∧ 𝑒𝑑𝑔𝑒(𝑣𝑎𝑟𝑠, 𝑣𝑎𝑟𝑠′) ⟹ TARGET(𝑣𝑎𝑟𝑠′)
▶ SRC(𝑣𝑎𝑟𝑠,ord) ∧ 𝑒𝑑𝑔𝑒(𝑣𝑎𝑟𝑠, 𝑣𝑎𝑟𝑠′)∧consistent(ord, …) ⟹ T .(𝑣𝑎𝑟𝑠′,ord)

▶ the current edge can be added without causing new inconsistencies

SAT: There is a safety proof. UNSAT: Must be a counterexample.

▶ Proof-of-concept implementation: Github Thorn (Theta + HORN)

▶ Full Peterson example: File-pdf CHCs for Weak MemoryCODE peterson.smt2
Thank you, Gidon!

▶ Witnesses proposal: File-pdf Software Verification Witnesses for Weak Memory
Thank you, Marian!

Challenges (and Solutions) in Memory-Model-Aware Verification 10 AVM’24, Freiburg

https://github.com/ftsrg/theta/
https://leventebajczi.com/publications/fmcad_studentforum24_wm_chc.pdf
https://leventebajczi.com/publications/aux/peterson.smt2
https://leventebajczi.com/publications/fmcad_studentforum24_wm_witness.pdf

Constrained Horn Clauses for Weak Memory (Level 3)

▶ SRC(𝑣𝑎𝑟𝑠) ∧ 𝑒𝑑𝑔𝑒(𝑣𝑎𝑟𝑠, 𝑣𝑎𝑟𝑠′) ⟹ TARGET(𝑣𝑎𝑟𝑠′)
▶ SRC(𝑣𝑎𝑟𝑠,ord) ∧ 𝑒𝑑𝑔𝑒(𝑣𝑎𝑟𝑠, 𝑣𝑎𝑟𝑠′)∧consistent(ord, …) ⟹ T .(𝑣𝑎𝑟𝑠′,ord)

▶ the current edge can be added without causing new inconsistencies

SAT: There is a safety proof. UNSAT: Must be a counterexample.

▶ Proof-of-concept implementation: Github Thorn (Theta + HORN)

▶ Full Peterson example: File-pdf CHCs for Weak MemoryCODE peterson.smt2
Thank you, Gidon!

▶ Witnesses proposal: File-pdf Software Verification Witnesses for Weak Memory
Thank you, Marian!

Challenges (and Solutions) in Memory-Model-Aware Verification 10 AVM’24, Freiburg

https://github.com/ftsrg/theta/
https://leventebajczi.com/publications/fmcad_studentforum24_wm_chc.pdf
https://leventebajczi.com/publications/aux/peterson.smt2
https://leventebajczi.com/publications/fmcad_studentforum24_wm_witness.pdf

Constrained Horn Clauses for Weak Memory (Level 3)

▶ SRC(𝑣𝑎𝑟𝑠) ∧ 𝑒𝑑𝑔𝑒(𝑣𝑎𝑟𝑠, 𝑣𝑎𝑟𝑠′) ⟹ TARGET(𝑣𝑎𝑟𝑠′)
▶ SRC(𝑣𝑎𝑟𝑠,ord) ∧ 𝑒𝑑𝑔𝑒(𝑣𝑎𝑟𝑠, 𝑣𝑎𝑟𝑠′)∧consistent(ord, …) ⟹ T .(𝑣𝑎𝑟𝑠′,ord)

▶ the current edge can be added without causing new inconsistencies

SAT: There is a safety proof. UNSAT: Must be a counterexample.

▶ Proof-of-concept implementation: Github Thorn (Theta + HORN)

▶ Full Peterson example: File-pdf CHCs for Weak MemoryCODE peterson.smt2
Thank you, Gidon!

▶ Witnesses proposal: File-pdf Software Verification Witnesses for Weak Memory
Thank you, Marian!

Challenges (and Solutions) in Memory-Model-Aware Verification 10 AVM’24, Freiburg

https://github.com/ftsrg/theta/
https://leventebajczi.com/publications/fmcad_studentforum24_wm_chc.pdf
https://leventebajczi.com/publications/aux/peterson.smt2
https://leventebajczi.com/publications/fmcad_studentforum24_wm_witness.pdf

Constrained Horn Clauses for Weak Memory (Level 3)

▶ SRC(𝑣𝑎𝑟𝑠) ∧ 𝑒𝑑𝑔𝑒(𝑣𝑎𝑟𝑠, 𝑣𝑎𝑟𝑠′) ⟹ TARGET(𝑣𝑎𝑟𝑠′)
▶ SRC(𝑣𝑎𝑟𝑠,ord) ∧ 𝑒𝑑𝑔𝑒(𝑣𝑎𝑟𝑠, 𝑣𝑎𝑟𝑠′)∧consistent(ord, …) ⟹ T .(𝑣𝑎𝑟𝑠′,ord)

▶ the current edge can be added without causing new inconsistencies

SAT: There is a safety proof. UNSAT: Must be a counterexample.

▶ Proof-of-concept implementation: Github Thorn (Theta + HORN)

▶ Full Peterson example: File-pdf CHCs for Weak MemoryCODE peterson.smt2
Thank you, Gidon!

▶ Witnesses proposal: File-pdf Software Verification Witnesses for Weak Memory
Thank you, Marian!

Challenges (and Solutions) in Memory-Model-Aware Verification 10 AVM’24, Freiburg

https://github.com/ftsrg/theta/
https://leventebajczi.com/publications/fmcad_studentforum24_wm_chc.pdf
https://leventebajczi.com/publications/aux/peterson.smt2
https://leventebajczi.com/publications/fmcad_studentforum24_wm_witness.pdf

