
Software Engineering Meets Program Verification:
Incremental Development & Continuous Checking

Manuel Bentele

University of Freiburg

Hahn-Schickard

16th Alpine Verification Meeting (AVM’24)
September 04, 2024

Manuel Bentele Incremental Development & Continuous Checking 1 / 10

How to (not) develop new products?

https://pmac-agpc.ca/project-management-tree-swing-story

• Product engineering
can be complicated

• Steps can go wrong
during the development
process

• Quality assurance
(verification &
validation) is important

Manuel Bentele Incremental Development & Continuous Checking 2 / 10

https://pmac-agpc.ca/project-management-tree-swing-story

How does a software development process look like?

Requirements

Design Implementation Verification

Deployment

Maintenance

• Verification or testing is often done at the end
• Final program is complex and verification effort is very high
• A verifier often cannot check the final program at once

Manuel Bentele Incremental Development & Continuous Checking 3 / 10

How is software engineering combined with program verification?

Incremental Development, Continuous Checking (IDCC)

Requirements

Design Implementation Verification

Deployment

Maintenance

• IDCC combines development with verification
• Adapt development workflow to be beneficial for verification
• Detect specification violations early in development

Manuel Bentele Incremental Development & Continuous Checking 4 / 10

How does the incremental development workflow look like?

. . .

Skeleton 1 Skeleton 2 Program P

Manuel Bentele Incremental Development & Continuous Checking 5 / 10

How does the incremental development workflow look like? (cont’d)

• Develop program increment by increment:
• Start with a program skeleton and
• refine skeleton (until final program P implements all functionality) while
• checking each program revision after an increment is created

• Development adaptions for continuous checking (program verification):
• Initial program skeleton should contain as much control flow as possible
• More data flow and calculations are added while refining the skeleton

Manuel Bentele Incremental Development & Continuous Checking 6 / 10

What software do we develop with IDCC and what specification is checked?

• IDCC is applied in the context of embedded systems to develop embedded software
written in the language C

• Temporal dependencies are used as specification:
• Interface specification for Hardware Abstraction Layers (HALs)
• “Does each program revision uses hardware access functions correctly?”
• E.g., call of HAL_Serial_Send() must be preceded by a call of HAL_Init()

• Violations of temporal dependencies are crucial and could lead to system failures

• Temporal dependencies can be checked early in development (e.g., in a skeleton)

Manuel Bentele Incremental Development & Continuous Checking 7 / 10

How to apply IDCC using an example?

void main() {
int avg = 0;
HAL_Init ();
while (*) {

HAL_Read_Analog ();
while (*) {

HAL_Delay_Ns ();

}

HAL_Serial_Send(avg);

}
}

Skeleton

void main() {
int avg = 0 , cnt = 0, val = 0 ;
HAL_Init ();
while (1) {

val = HAL_Read_Analog ();
while (cnt < 10000) {

HAL_Delay_Ns ();
cnt++;

}
if (val >= 0) {
avg = (avg + val) / 2;

}
HAL_Serial_Send(avg);
cnt = 0;

}
}

Program

Manuel Bentele Incremental Development & Continuous Checking 8 / 10

How to apply IDCC using an example? (cont’d)

• Skeleton:
• Sketches the control flow for final program
• Contains required HAL function calls
• Introduces non-determinism for all unknown choices1 (if possible)

• Increment:
• Refines skeleton by adding data flow (changes marked in green)
• Restricts non-determinism by making expressions more concrete

• Program:
• Final program cannot be verified by Ultimate Automizer with defaults at once

in a reasonable time
• But incremental verification with Ultimate Automizer succeeds (reuses

computation results of the verified skeleton)
1Non-deterministic choices are denoted in the code with the symbol *

Manuel Bentele Incremental Development & Continuous Checking 9 / 10

Conclusion

What has been done?
• Development process to combine software engineering with program verification
• Program verification is carried out continuously during development
• Verify complex programs that cannot be checked by a verifier at once

What is currently being done?
• Redevelopment of two real-world programs for a sensor system via IDCC

What are the next steps?
• Include concurrent programs with interrupts in the development process
• Implement witness-guided verification in Ultimate to (re)use invariants from

witnesses for incremental verification

Manuel Bentele Incremental Development & Continuous Checking 10 / 10

	Software Engineering
	Development Process

	Specification & Verification
	Apply IDCC

