Detection and integration of conditional commutativity

for concurrent program verification

Marcel Ebbinghaus

University of Freiburg

6" Sep. 2024

AVM 2024

Concurrent programs

(a) Program automaton Ap (b) Program automaton A%
for threadl. for thread2.

Figure: Two program automata modeling the threads of a concurrent program.

Marcel Ebbinghaus 1/16

Concurrent programs

(wm) =%
(22)

Figure: The concurrent program automaton Ap for the concurrent program consisting of A, A%.

Marcel Ebbinghaus 2/16

How do we prove concurrent progra

program automaton Ap

return automaton Aj+1
such that
7 € L(An+1) and
L(Any1) C INFEASIBLE

yes

LARApPNAIN...NA))=107 ‘ 7 € INFEASIBLE ?

v
yes no

return error trace 7
such that

TELARAPNAIN...NAL))

R +

P is correct ‘P is incorrect

Figure: The CEGAR-Loop of Trace Abstraction Refinement (TAR)
with integrated Partial Order Reduction (POR).

Marcel Ebbinghaus 3/16

What is a reduction?

Problem
@ The generalizations of TAR may not be able to cover all error traces

Marcel Ebbinghaus 4/16

What is a reduction?

Problem
@ The generalizations of TAR may not be able to cover all error traces

@ Two statements commute if their order doesn’t affect the semantics

o Example: [(x :=x+1)(y :=2)]=[(y :=2)(x :=x+1)]

Marcel Ebbinghaus 4/ 16

What is a reduction?

Problem
@ The generalizations of TAR may not be able to cover all error traces

@ Two statements commute if their order doesn’t affect the semantics

o Example: [(x :=x+1)(y :=2)]=[(y :=2)(x :=x+1)]

Reduction

@ Traces that only differ in the order of commuting statements can be seen as equivalent
@ A reduction is a subset of traces which contains at least one trace per equivalence class

@ Proving the reduction is sufficient to prove the program

Marcel Ebbinghaus 4/16

What is conditional commutativity?

o Conditional commutativity allows us to further refine the reduction J

Marcel Ebbinghaus 5/16

What is conditional commutativity?

o Conditional commutativity allows us to further refine the reduction J

Figure: A program automaton with conditional commutativity.

Marcel Ebbinghaus 5/16

What is conditional commutativity?

o Conditional commutativity allows us to further refine the reduction J

Figure: A program automaton with conditional commutativity.

° [(y :=0)(y :==x)] # I(y = x)(y := 0)], J

i.e. (y:=0)and (y := x) do not commute in general

Marcel Ebbinghaus 5/16

What is conditional commutativity?

@ Conditional commutativity allows us to further refine the reduction)

Figure: A program automaton with conditional commutativity.

° [(y = 0)(y :==x)] # I(y = x)(y := 0)],

i.e. (y:=0)and (y := x) do not commute in general

° [(y = 0)(y == x)gx=0y = (¥ = x)(y := 0)] =0}
i.e. (y:=0)and (y := x) commute under condition x =0

Marcel Ebbinghaus 5/16

Why do we want more conditional commutativity?

{true} y=0 {y =0} {false}

ROSR O

yi=x
I\y:=0} \{y:=xy>0} z

Figure: Generalization G of trace
(x = 0)(y == x)(y == 0)(y > 0).

Figure: A simplified reduction
automaton Agr(Ap).

Marcel Ebbinghaus 6 /16

Why do we want more conditional commutativity?

@ The generalization did not provide a
sufficient commutativity condition

@ Thus, we need another iteration of
the refinement loop

{false}

Figure: Reduction automaton Ag(Ap N Gy).

Marcel Ebbinghaus 7/ 16

How do we get more conditional commutativity?

program automaton Ap Generalization Approach

\

n:=0

return automaton A,41
such that
T € L(Any1) and
L(An+1) C INFEASIBLE

DFS-Approach
~ yes

M~
LARAP N AiN...NA))=107 ‘ 7 € INFEASIBLE ?

v
yes no

return error trace T
such that

T € LARMUAP NALN...NAR))

2 +

P is correct P is incorrect

Figure: A modified CEGAR-Loop showing our two approaches.

Marcel Ebbinghaus 8 /16

Generalization Approach

@ 1. Traverse along the infeasible trace
until two non-commuting statements
occur or until its end

@ Thus, until (h,0) with non-
commuting y :=x and y :=0

Figure: A simplified reduction
automaton Agr(Ap).

Marcel Ebbinghaus

Generalization Approach

@ 2. Decide if we want to check for
conditional commutativity

@ We use different criteria for this

Figure: A simplified reduction
automaton Agr(Ap).

Marcel Ebbinghaus 9 /16

Generalization Approach

@ 3. Try to calculate a commutativity
condition

@ For instance x = 0, since (y :=0)
and (y := x) commute under
condition x =0

Figure: A simplified reduction
automaton Agr(Ap).

Marcel Ebbinghaus 9/16

Generalization Approach

@ 4. Try to prove that this condition
holds after the current trace and
store the proof

@ For instance {true}{x = 0} proves
that condition x = 0 holds after trace
x := 0, since {true}x := 0{x =0} is
a valid Hoare-triple

Figure: A simplified reduction
automaton Agr(Ap).

Marcel Ebbinghaus 9/16

Generalization Approach

@ 5. Continue with 1

@ 1. Traverse along the infeasible trace
until two non-commuting statements
occur or until its end

@ 6. Construct a generalization G’ with
integrated proofs

Figure: A simplified reduction
automaton Agr(Ap).

Marcel Ebbinghaus 9/16

Generalization Approach

{x=0}

8—8’
y:O,y:x@

x:=0,y>0

{x=0Ay=0}

X\{y >0}

Figure: Generalization G of trace (x := 0)(y := x)(y := 0)(y > 0)
with integrated proof {true}{x = 0} for condition x = 0.

Marcel Ebbinghaus 10 / 16

Generalization Approach

@ The integration of conditional
commutativity allows us to prune the
remaining error traces

@ Thus, we don’t need another iteration
of the refinement loop

{false}

Figure: Reduction automaton Ag(Ap N G)).

Marcel Ebbinghaus 11 /16

DFS-Approach

e 1. DFS until two non-commuting
statements occur

@ Thus, until (A,0) with non-
commuting y :=x and y :=0

Figure: A simplified reduction
automaton Agr(Ap).

Marcel Ebbinghaus 12 / 16

DFS-Approach

@ 2. Decide if we want to check for
conditional commutativity

@ We use different criteria for this

Figure: A simplified reduction
automaton Agr(Ap).

Marcel Ebbinghaus 12 / 16

DFS-Approach

@ 3. Try to calculate a commutativity
condition

@ For instance x = 0, since (y :=0)
and (y := x) commute under
condition x =0

Figure: A simplified reduction
automaton Agr(Ap).

Marcel Ebbinghaus 12 / 16

DFS-Approach

@ 4. Try to prove that this condition
holds after the current trace and
construct a Floyd-Hoare automaton

@ For instance proof {true}{x = 0}
E\{x:= 0} 5

{true}i i 8{)(=0}
4. x:=0

Figure: Floyd-Hoare automaton
Ay of {true,x = 0}.

Figure: A simplified reduction @ 5. Add this automaton to the trace
automaton Ag(Ap). abstraction and restart the DFS

Marcel Ebbinghaus

12/ 16

DFS-Approach

@ The integration of conditional
commutativity allows us to prune one

{x=
of the error traces
@ Thus, we only need to consider the
{x= remaining error trace

Figure: Reduction automaton Ag(Ap N Ax=o)-

Marcel Ebbinghaus 13 /16

Correctness and Termination

@ We proved correctness of both approaches
@ We showed that the DFS-approach is non-terminating in general

@ We were able to guarantee and prove termination by using so called perfect proofs

Marcel Ebbinghaus 14 / 16

Evaluation

@ We implemented both approaches into Ultimate GemCutter

@ We used a total of 875 programs as benchmarks

Summary of observations

@ The generalization approach proved more programs in total than GemCutter, while the
DFS-approach proved less

@ Both approaches were able to prove programs that the regular GemCutter didn't prove

@ Both come with an overhead in time and memory consumption

@ We think that the overhead is a reasonable one for the generalization approach

Marcel Ebbinghaus 15/ 16

Evaluation

Regular GemCutter:
Generalization-Approach: e 554 561
DFS-Approach: o

CPU Time

correct results

Figure: Logarithmic CPU-Time quantile-diagram.

Marcel Ebbinghaus 16 / 16

	Motivation
	Generalization Approach
	DFS-Approach
	Evaluation

