
Detection and integration of conditional commutativity
for concurrent program verification

Marcel Ebbinghaus

University of Freiburg

6th Sep. 2024

AVM 2024



Concurrent programs

l11

l12

l13

l14 l15

x := x + 1

x := x + 1

x ≥ 5 x < 5

(a) Program automaton A1
P

for thread1.

l21

l22

l23

y := 2

x := x ∗ 2

(b) Program automaton A2
P

for thread2.

Figure: Two program automata modeling the threads of a concurrent program.

Marcel Ebbinghaus 1 / 16



Concurrent programs

(l11 , l
2
1 )

(l12 , l
2
1 ) (l11 , l

2
2 )

(l13 , l
2
1 ) (l12 , l

2
2 ) (l11 , l

2
3 )

(l14 , l
2
1 ) (l15 , l

2
1 ) (l13 , l

2
2 ) (l12 , l

2
3 )

(l14 , l
2
2 ) (l15 , l

2
2 ) (l13 , l

2
3 )

(l14 , l
2
3 ) (l15 , l

2
3 )

x := x + 1 y := 2

y := 2 x := x + 1

x := x + 1 x := x ∗ 2

x ≥ 5

x < 5

y := 2
x := x + 1

x := x ∗ 2 x := x + 1

y := 2

y := 2

x ≥ 5

x < 5

x := x ∗ 2
x := x + 1

x := x ∗ 2

x := x ∗ 2

x ≥ 5

x < 5

Figure: The concurrent program automaton AP for the concurrent program consisting of A1
P ,A

2
P .

Marcel Ebbinghaus 2 / 16



How do we prove concurrent programs?

Figure: The CEGAR-Loop of Trace Abstraction Refinement (TAR)
with integrated Partial Order Reduction (POR).

Marcel Ebbinghaus 3 / 16



What is a reduction?

Problem

The generalizations of TAR may not be able to cover all error traces

Marcel Ebbinghaus 4 / 16



What is a reduction?

Problem

The generalizations of TAR may not be able to cover all error traces

Commutativity

Two statements commute if their order doesn’t affect the semantics

Example: J(x := x + 1)(y := 2)K ≡ J(y := 2)(x := x + 1)K

Marcel Ebbinghaus 4 / 16



What is a reduction?

Problem

The generalizations of TAR may not be able to cover all error traces

Commutativity

Two statements commute if their order doesn’t affect the semantics

Example: J(x := x + 1)(y := 2)K ≡ J(y := 2)(x := x + 1)K

Reduction

Traces that only differ in the order of commuting statements can be seen as equivalent

A reduction is a subset of traces which contains at least one trace per equivalence class

Proving the reduction is sufficient to prove the program

Marcel Ebbinghaus 4 / 16



What is conditional commutativity?

Conditional commutativity allows us to further refine the reduction

Marcel Ebbinghaus 5 / 16



What is conditional commutativity?

Conditional commutativity allows us to further refine the reduction

l0, l0

l1, l0 l0, l1

l1, l1

{x = 0}

{x = 0} {x = 0}

{x = 0}

y := 0 y := x

y := x y := 0

Figure: A program automaton with conditional commutativity.

Marcel Ebbinghaus 5 / 16



What is conditional commutativity?

Conditional commutativity allows us to further refine the reduction

l0, l0

l1, l0 l0, l1

l1, l1

{x = 0}

{x = 0} {x = 0}

{x = 0}

y := 0 y := x

y := x y := 0

Figure: A program automaton with conditional commutativity.

J(y := 0)(y := x)K ̸≡ J(y := x)(y := 0)K,
i.e. (y := 0) and (y := x) do not commute in general

Marcel Ebbinghaus 5 / 16



What is conditional commutativity?

Conditional commutativity allows us to further refine the reduction

l0, l0

l1, l0 l0, l1

l1, l1

{x = 0}

{x = 0} {x = 0}

{x = 0}

y := 0 y := x

y := x y := 0

Figure: A program automaton with conditional commutativity.

J(y := 0)(y := x)K ̸≡ J(y := x)(y := 0)K,
i.e. (y := 0) and (y := x) do not commute in general

J(y := 0)(y := x)K{x=0} ≡ J(y := x)(y := 0)K{x=0},
i.e. (y := 0) and (y := x) commute under condition x = 0

Marcel Ebbinghaus 5 / 16



Why do we want more conditional commutativity?

l0

l1

l2 l3

l4

l5

{true}

{true}

{true} {true}

{true}

{true}

x := 0

y := x y := 0

y := 0 y := x

y > 0

Figure: A simplified reduction
automaton AR(AP).

g0 g1 g2

{true} {y = 0} {false}

y > 0

y := 0

y := x

Σ\{y := 0} Σ\{y := x , y > 0} Σ

Figure: Generalization G1 of trace
(x := 0)(y := x)(y := 0)(y > 0).

Marcel Ebbinghaus 6 / 16



Why do we want more conditional commutativity?

(l0, g0)

(l1, g0)

(l2, g0) (l3, g1)

(l4, g1) (l4, g0)

(l5, g0)(l5, g2)

{true}

{true}

{true} {y = 0}

{y = 0}

{false}

{true}

{true}

x := 0

y := x y := 0

y := 0 y := x

y > 0 y > 0

Figure: Reduction automaton AR(AP ∩ G1).

The generalization did not provide a
sufficient commutativity condition

Thus, we need another iteration of
the refinement loop

Marcel Ebbinghaus 7 / 16



How do we get more conditional commutativity?

Generalization Approach

DFS-Approach

Figure: A modified CEGAR-Loop showing our two approaches.

Marcel Ebbinghaus 8 / 16



Generalization Approach

l0

l1

l2 l3

l4

l5

{true}

{true}

{true} {true}

{true}

{true}

x := 0

y := x y := 0

y := 0 y := x

y > 0

Figure: A simplified reduction
automaton AR(AP).

1. Traverse along the infeasible trace
until two non-commuting statements
occur or until its end

Thus, until (l1, ∅) with non-
commuting y := x and y := 0

Marcel Ebbinghaus 9 / 16



Generalization Approach

l0

l1

l2 l3

l4

l5

{true}

{true}

{true} {true}

{true}

{true}

x := 0

y := x y := 0

y := 0 y := x

y > 0

Figure: A simplified reduction
automaton AR(AP).

2. Decide if we want to check for
conditional commutativity

We use different criteria for this

Marcel Ebbinghaus 9 / 16



Generalization Approach

l0

l1

l2 l3

l4

l5

{true}

{true}

{true} {true}

{true}

{true}

x := 0

y := x y := 0

y := 0 y := x

y > 0

Figure: A simplified reduction
automaton AR(AP).

3. Try to calculate a commutativity
condition

For instance x = 0, since (y := 0)
and (y := x) commute under
condition x = 0

Marcel Ebbinghaus 9 / 16



Generalization Approach

l0

l1

l2 l3

l4

l5

{true}

{true}

{true} {true}

{true}

{true}

x := 0

y := x y := 0

y := 0 y := x

y > 0

Figure: A simplified reduction
automaton AR(AP).

4. Try to prove that this condition
holds after the current trace and
store the proof

For instance {true}{x = 0} proves
that condition x = 0 holds after trace
x := 0, since {true}x := 0{x = 0} is
a valid Hoare-triple

Marcel Ebbinghaus 9 / 16



Generalization Approach

l0

l1

l2 l3

l4

l5

{true}

{true}

{true} {true}

{true}

{true}

x := 0

y := x y := 0

y := 0 y := x

y > 0

Figure: A simplified reduction
automaton AR(AP).

5. Continue with 1

1. Traverse along the infeasible trace
until two non-commuting statements
occur or until its end

6. Construct a generalization G ′ with
integrated proofs

Marcel Ebbinghaus 9 / 16



Generalization Approach

g0

g1 g2

g3 g4

{x = 0} {x = 0 ∧ y = 0}

{true}

{y = 0} {false}

y > 0

y := 0, y := x

y > 0
x := 0

y := 0

y := x

x := 0

y := x , y > 0

y := 0 Σ

x := 0, y > 0 Σ\{y > 0}

Figure: Generalization G ′
1 of trace (x := 0)(y := x)(y := 0)(y > 0)

with integrated proof {true}{x = 0} for condition x = 0.

Marcel Ebbinghaus 10 / 16



Generalization Approach

(l0, g0)

(l1, g3)

(l2, g4) (l3, g4)

(l4, g4)

(l5, g2)

{true}

{x = 0}

{x = 0 ∧ y = 0} {x = 0 ∧ y = 0}

{x = 0 ∧ y = 0}

{false}

x := 0

y := x y := 0

y := 0

y > 0

Figure: Reduction automaton AR(AP ∩ G ′
1).

The integration of conditional
commutativity allows us to prune the
remaining error traces

Thus, we don’t need another iteration
of the refinement loop

Marcel Ebbinghaus 11 / 16



DFS-Approach

l0

l1

l2 l3

l4

l5

{true}

{true}

{true} {true}

{true}

{true}

x := 0

y := x y := 0

y := 0 y := x

y > 0

Figure: A simplified reduction
automaton AR(AP).

1. DFS until two non-commuting
statements occur

Thus, until (l1, ∅) with non-
commuting y := x and y := 0

Marcel Ebbinghaus 12 / 16



DFS-Approach

l0

l1

l2 l3

l4

l5

{true}

{true}

{true} {true}

{true}

{true}

x := 0

y := x y := 0

y := 0 y := x

y > 0

Figure: A simplified reduction
automaton AR(AP).

2. Decide if we want to check for
conditional commutativity

We use different criteria for this

Marcel Ebbinghaus 12 / 16



DFS-Approach

l0

l1

l2 l3

l4

l5

{true}

{true}

{true} {true}

{true}

{true}

x := 0

y := x y := 0

y := 0 y := x

y > 0

Figure: A simplified reduction
automaton AR(AP).

3. Try to calculate a commutativity
condition

For instance x = 0, since (y := 0)
and (y := x) commute under
condition x = 0

Marcel Ebbinghaus 12 / 16



DFS-Approach

l0

l1

l2 l3

l4

l5

{true}

{true}

{true} {true}

{true}

{true}

x := 0

y := x y := 0

y := 0 y := x

y > 0

Figure: A simplified reduction
automaton AR(AP).

4. Try to prove that this condition
holds after the current trace and
construct a Floyd-Hoare automaton

For instance proof {true}{x = 0}

f0 f1

{true} {x = 0}

x := 0

Σ\{x := 0} Σ

Figure: Floyd-Hoare automaton
Ax=0 of {true, x = 0}.

5. Add this automaton to the trace
abstraction and restart the DFS

Marcel Ebbinghaus 12 / 16



DFS-Approach

(l0, f0)

(l1, f1)

(l2, f1) (l3, f1)

(l4, f1)

(l5, f1)

{true}

{x = 0}

{x = 0} {x = 0}

{x = 0}

{x = 0}

x := 0

y := x y := 0

y := 0

y > 0

Figure: Reduction automaton AR(AP ∩ Ax=0).

The integration of conditional
commutativity allows us to prune one
of the error traces

Thus, we only need to consider the
remaining error trace

Marcel Ebbinghaus 13 / 16



Correctness and Termination

We proved correctness of both approaches

We showed that the DFS-approach is non-terminating in general

We were able to guarantee and prove termination by using so called perfect proofs

Marcel Ebbinghaus 14 / 16



Evaluation

We implemented both approaches into Ultimate GemCutter

We used a total of 875 programs as benchmarks

Summary of observations

The generalization approach proved more programs in total than GemCutter, while the
DFS-approach proved less

Both approaches were able to prove programs that the regular GemCutter didn’t prove

Both come with an overhead in time and memory consumption

We think that the overhead is a reasonable one for the generalization approach

Marcel Ebbinghaus 15 / 16



Evaluation

Figure: Logarithmic CPU-Time quantile-diagram.

Regular GemCutter: •
Generalization-Approach: •
DFS-Approach: •

Marcel Ebbinghaus 16 / 16


	Motivation
	Generalization Approach
	DFS-Approach
	Evaluation

