Repetitive Substructures for
Efficient Representation of Automarta

Michal Sedy

Supervisor: doc. Mgr. Lukas Holik, Ph.D.

- BRNO | FACULTY
r UNIVERSITY | OF INFORMATION
OF TECHNOLOGY |[TECHNOLOGY

September 4, 2024

| Motivation |

e Algorithms suffer from stafe explosion
when processing large automata.

Repetitive Substructures for Efficient Representation of Automata | 2/9

| Motivation |

e Algorithms suffer from stafe explosion
when processing large automata.

e State-of-the-art minimization methods
(state merging and fransition pruning)
can leave redundant substructures in
the resulting automata.

Repetitive Substructures for Efficient Representation of Automata | 2/9

| Motivation |

e Algorithms suffer from stafe explosion
when processing large automata.

e State-of-the-art minimization methods
(state merging and fransition pruning)
can leave redundant substructures in
the resulting automata.

e Smaller automata means faster and
cheaper computations, generally more
efficient (can be used within hardware
for high-speed network filtering).

Repetitive Substructures for Efficient Representation of Automata | 2/9

| Motivation |

e Algorithms suffer from stafe explosion
when processing large automata.

e State-of-the-art minimization methods
(state merging and fransition pruning)
can leave redundant substructures in
the resulting automata.

e Smaller automata means faster and
cheaper computations, generally more
efficient (can be used within hardware
for high-speed network filtering).

* Why not take inspiration from program-
ming languages and use procedures
and a stack for repetitive substructures?

Repetitive Substructures for Efficient Representation of Automata | 2/9

| Procedure Finding |

e Utilization of a superproduct.
°*A=(Q,%,4,q,F)
° A=(Q,%,5,Q,Q)
® The superproduct of Ais A’ x A’

| Procedure Finding |

e Utilization of a superproduct.
°*A=(Q,%,4,q,F)
° A=(Q,%,5,Q,Q)
® The superproduct of Ais A’ x A’

e Each subgraph of the superproduct
represents a procedure candidate.

e |t is important to choose a subgraph
with the highest reduction potenfial.

| Procedure Finding |

e Utilization of a superproduct.
°*A=(Q,%,4,q,F)
° A=(Q,%,5,Q,Q)
® The superproduct of Ais A’ x A’

e Each subgraph of the superproduct
represents a procedure candidate.

e |t is important to choose a subgraph
with the highest reduction potenfial.
* Give priority to subgraphs with the
most redundant fransitions.
* Avoid state repetition.

| Procedure Mapping |

start e Each substructure is assigned a unique stack
symbol to differentiate its fransitions.

* Repetitive substructures are substituted with
a single procedure, following the procedure
candidate derived from the superproduct.

. *new XMLHttpRequest

start

Repetitive Substructures for Efficient Representation of Automata | 4/9

| Reduction of Stack Alphabet |

¢ Unique stack symbols for each pro-
cedure are not necessary.

¢ Only those symbols that meet in the
same state must be distinct.

Repetitive Substructures for Efficient Representation of Automata | 5/9

| Reduction of Stack Alphabet |

.xnew XMLHttpRequest

¢ Unique stack symbols for each pro-
cedure are not necessary.

¢ Only those symbols that meet in the stort
same state must be distinct.

* Meet is an equivalence relation.

® a ~meet D iff there exists such a state
where g or b can be on the stack.

e Stack alphabet can be partitioned
info equivalence classes according
to the meet relation.

Repetitive Substructures for Efficient Representation of Automata | 5/9

| Reduction of Stack Alphabet

¢ Unique stack symbols for each pro-
cedure are not necessary.

¢ Only those symbols that meet in the
same state must be distinct.

* Meet is an equivalence relation.

® a ~meet D iff there exists such a state
where g or b can be on the stack.

e Stack alphabet can be partitioned
info equivalence classes according
to the meet relation.

e The minimal number of necessary
stack symbols is equal to the size of
the greatest equivalence class.

| Reduction Metrics |

e State reduction is determined by the difference in the number of states and the
size of the non-reduced stack alphabet.

¢ Transition reduction is given solely by the difference in the number of fransitions.

Repetitive Substructures for Efficient Representation of Automata | 6/9

| Reduction Metrics |

e State reduction is determined by the difference in the number of states and the
size of the non-reduced stack alphabet.

¢ Transition reduction is given solely by the difference in the number of fransitions.

* 8states
® (O stack symbols

® 10 transitions

Repetitive Substructures for Efficient Representation of Automata | 6/9

| Reduction Metrics |

e State reduction is determined by the difference in the number of states and the
size of the non-reduced stack alphabet.

¢ Transition reduction is given solely by the difference in the number of fransitions.

a,Qo/q1 b, o/

c.aqi/qr GG/
%D C,q1/qs €./
C.q3/qs d,qa/G

a,gs/e b,Ge/e

* 1 state
* 8states ® 7 stack symbols
® 0 stack symbols ® (0% reduction in states
® 10 transitions ® 10 transitions

® (0% reduction in transitions

Repetitive Substructures for Efficient Representation of Automata | 6/9

| Reduction Metrics |

e State reduction is determined by the difference in the number of states and the
size of the non-reduced stack alphabet.

¢ Transition reduction is given solely by the difference in the number of fransitions.

c.ai/an

a,Qo/q1 b, o/

c.aqi/qr GG/
%D C,q1/qs €./
C.q3/qs d,qa/G

a,gs/e b,Ge/e

* 1 state * Sstates
* 8states ® 7 stack symbols ® 2 stack symbols
® 0 stack symbols ® (0% reduction in states ® 12.5% reduction in states
® 10 transitions ® 10 transitions ® 8 fransitions
® (0% reduction in transitions ® 20% reduction in transitions

Repetitive Substructures for Efficient Representation of Automata | 6/9

| Experimental Results - Regular Expressions I
i AN

o }
10° 10 10 10 102 10° 10*

102
Number of states after RABIT/Reduce Number of transitions after RABIT/Reduce

,_.
o
-
o

Parametric Regular Expressions
e Total of 3,656 automata
* Maox: 503 states and 6,101 transitions
¢ Average state reduction: 48.4%
¢ Average fransition reduction: 47.9%

o
®

Transition reduction proportion
° °
IS >
'&15 i- 3

o o o
a £y @

State reduction proportion

o
N
o
N

o
o

-

Repetitive Substructures for Efficient Representation of Automata | 7/9

| Experimental Results - Regular Expressions I

,_.
o
-
o

Parametric Regular Expressions
e Total of 3,656 automata
* Maox: 503 states and 6,101 transitions
¢ Average state reduction: 48.4%
¢ Average fransition reduction: 47.9%

o
@

State reduction proportion
° °
IS S
.
i
Transition reduction proportion
° °
IS >

o
@

o
N
o
N

o
o

s
cip -
o
10° 10 10 10

102 2 1
Number of states after RABIT/Reduce Number of transitions after RABIT/Reduce

-

1)
=
o

Email Validations
e Total of 362 automata
e Max: 289 states and 10,333 transitions

o
3
o
£

o
£y
o
>

o
=

State reduction proportion
o
=

Transition reduction proportion

¢ Average state reduction: 29% i
» Average transition reduction: 28.6% :
%% 10 102 %% 10! 10 10°
Number of states after RABIT/Reduce Number of transitions after RABIT/Reduce

Repetitive Substructures for Efficient Representation of Automata | 7/9

| Experimental Results - Snort (Network Filtering) |

e Total of 3,616 regular expressions from seven families of Snort rules.
e Each automaton represents a union of regular expressions from one family.

e The table illustrates the further minimization achieved by utilizing procedures,
following the initial automaton reduction using the Rabit/Reduce tool, which
employs state merging and transition pruning.

Snort rules Qi din ras SrAB Qproc + Iproc proc red.
p2p 33 1,090 32 1,084 25+6 (-3.1%) 570 (-47.4%) 2
worm 50 3,880 34 290 24+8 (-5.9%) 284 (-2.1%) 2
shellcode 162 3,328 56 579 48+2 (-10.7%) 486 (-16.1%) 2
mysq| 235 30,052 91 14,430 45+18 (-30.8%) 7,142 (-50.5%) 5
chat 408 23,937 113 1,367 71425 (-15.0%) 1058 (-22.6%) 3
specific-threats 459 57.292 236 31.935 99+32 (-44.5%) 12,680 (-60.3%) 6
telnet 829 7.070 309 2,898 165482 (-23.3%) 2,164 (-25.3%) 4

Qproc + Mroc: Number of states and stack symbols after procedure mapping.

red . Number of stack symbols after stack alphabet reduction.

Repetitive Substructures for Efficient Representation of Automata | 8/9

| Future Work |

¢ Investigate the impact of the stack on the per-
formance of automata operations.

¢ Incorporate automata with a stack in hardware
to scan high-speed networks.

¢ Improve the detection of similar substructures.
e Effectively utilize a greater stack depth.

Repetitive Substructures for Efficient Representation of Automata | 9/9

| Future Work |

¢ Investigate the impact of the stack on the per-
formance of automata operations.

¢ Incorporate automata with a stack in hardware
to scan high-speed networks.

¢ Improve the detection of similar substructures.
e Effectively utilize a greater stack depth.

Thank you for your attention!

Repetitive Substructures for Efficient Representation of Automata | 9/9

| Reduce or Not to Reduce? |

* Why is the size of the stack alphabet reported before reduction?

Repetitive Substructures for Efficient Representation of Automata | 1/1

| Reduce or Not to Reduce? |

* Why is the size of the stack alphabet reported before reduction?

Repetitive Substructures for Efficient Representation of Automata | 1/1

| Reduce or Not to Reduce? |

* Why is the size of the stack alphabet reported before reduction?

sTorT—)O @ b qQ c @

b,a1/a
d,qs/aa
f,Qs/e

% -@

a, qo/h
C, /a3
€,0q4/0s

* 2states
® 6 stack symbols
® no reduction

Repetitive Substructures for Efficient Representation of Automata | 1/1

| Reduce or Not to Reduce? |

* Why is the size of the stack alphabet reported before reduction?

sTon—)@c@b@c@d@e%f

b,a1/q b, q0,1/%,3
d,qs/an d, 23/,
f,as/c f,Qu5/e
L) s C7) & —{even)——(oa0)
a, q/q a, Go,1/ %,
¢, %/03 C,%,3/%,s
€,0q4/0s ©,Q45/A45
® 2states ® 2states
* 6 stack symbols ® 3 stack symbols
® no reduction ® 28.6% reduction (Oris it?)

Repetitive Substructures for Efficient Representation of Automata | 1/1

	Appendix

