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e Algorithms suffer from stafe explosion
when processing large automata.

e State-of-the-art minimization methods
(state merging and fransition pruning)
can leave redundant substructures in
the resulting automata.

e Smaller automata means faster and
cheaper computations, generally more
efficient (can be used within hardware
for high-speed network filtering).

* Why not take inspiration from program-
ming languages and use procedures
and a stack for repetitive substructures?

Repetitive Substructures for Efficient Representation of Automata | 2/9



| Procedure Finding |

e Utilization of a superproduct.
°*A=(Q,%,4,q,F)
° A=(Q,%,5,Q,Q)
® The superproduct of Ais A’ x A’




| Procedure Finding |

e Utilization of a superproduct.
°*A=(Q,%,4,q,F)
° A=(Q,%,5,Q,Q)
® The superproduct of Ais A’ x A’

e Each subgraph of the superproduct
represents a procedure candidate.

e |t is important to choose a subgraph
with the highest reduction potenfial.




| Procedure Finding |

e Utilization of a superproduct.
°*A=(Q,%,4,q,F)
° A=(Q,%,5,Q,Q)
® The superproduct of Ais A’ x A’

e Each subgraph of the superproduct
represents a procedure candidate.

e |t is important to choose a subgraph
with the highest reduction potenfial.
* Give priority to subgraphs with the
most redundant fransitions.
* Avoid state repetition.




| Procedure Mapping |

start e Each substructure is assigned a unique stack
symbol to differentiate its fransitions.

* Repetitive substructures are substituted with
a single procedure, following the procedure
candidate derived from the superproduct.

. *new XMLHttpRequest

start
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| Reduction of Stack Alphabet |

¢ Unique stack symbols for each pro-
cedure are not necessary.

¢ Only those symbols that meet in the
same state must be distinct.
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| Reduction of Stack Alphabet

¢ Unique stack symbols for each pro-
cedure are not necessary.

¢ Only those symbols that meet in the
same state must be distinct.

* Meet is an equivalence relation.

® a ~meet D iff there exists such a state
where g or b can be on the stack.

e Stack alphabet can be partitioned
info equivalence classes according
to the meet relation.

e The minimal number of necessary
stack symbols is equal to the size of
the greatest equivalence class.




| Reduction Metrics |

e State reduction is determined by the difference in the number of states and the
size of the non-reduced stack alphabet.

¢ Transition reduction is given solely by the difference in the number of fransitions.
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® 10 transitions
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e State reduction is determined by the difference in the number of states and the
size of the non-reduced stack alphabet.

¢ Transition reduction is given solely by the difference in the number of fransitions.

a,Qo/q1 b, o/

c.aqi/qr GG/
%D C,q1/qs €./
C.q3/qs  d,qa/G

a,gs/e b,Ge/e

* 1 state
* 8states ® 7 stack symbols
® 0 stack symbols ® (0% reduction in states
® 10 transitions ® 10 transitions

® (0% reduction in transitions
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| Reduction Metrics |

e State reduction is determined by the difference in the number of states and the
size of the non-reduced stack alphabet.

¢ Transition reduction is given solely by the difference in the number of fransitions.

c.ai/an

a,Qo/q1 b, o/

c.aqi/qr GG/
%D C,q1/qs €./
C.q3/qs  d,qa/G

a,gs/e b,Ge/e

* 1 state * Sstates
* 8states ® 7 stack symbols ® 2 stack symbols
® 0 stack symbols ® (0% reduction in states ® 12.5% reduction in states
® 10 transitions ® 10 transitions ® 8 fransitions
® (0% reduction in transitions ® 20% reduction in transitions
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| Experimental Results - Regular Expressions I
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| Experimental Results - Snort (Network Filtering) |

e Total of 3,616 regular expressions from seven families of Snort rules.
e Each automaton represents a union of regular expressions from one family.

e The table illustrates the further minimization achieved by utilizing procedures,
following the initial automaton reduction using the Rabit/Reduce tool, which
employs state merging and transition pruning.

Snort rules Qi din ras SrAB Qproc + Iproc proc red.
p2p 33 1,090 32 1,084 25+6 (-3.1%) 570  (-47.4%) 2
worm 50 3,880 34 290 24+8 (-5.9%) 284 (-2.1%) 2
shellcode 162 3,328 56 579 48+2 (-10.7%) 486  (-16.1%) 2
mysq| 235 30,052 91 14,430 45+18  (-30.8%) 7,142  (-50.5%) 5
chat 408 23,937 113 1,367 71425 (-15.0%) 1058  (-22.6%) 3
specific-threats 459 57.292 236 31.935 99+32  (-44.5%) 12,680 (-60.3%) 6
telnet 829 7.070 309 2,898 165482  (-23.3%) 2,164  (-25.3%) 4

Qproc + Mroc: Number of states and stack symbols after procedure mapping.

red . Number of stack symbols after stack alphabet reduction.
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| Future Work |

¢ Investigate the impact of the stack on the per-
formance of automata operations.

¢ Incorporate automata with a stack in hardware
to scan high-speed networks.

¢ Improve the detection of similar substructures.
e Effectively utilize a greater stack depth.
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¢ Investigate the impact of the stack on the per-
formance of automata operations.

¢ Incorporate automata with a stack in hardware
to scan high-speed networks.

¢ Improve the detection of similar substructures.
e Effectively utilize a greater stack depth.

Thank you for your attention!
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| Reduce or Not to Reduce? |

* Why is the size of the stack alphabet reported before reduction?
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| Reduce or Not to Reduce? |

* Why is the size of the stack alphabet reported before reduction?

sTorT—)O @ b qQ c @

b,a1/a
d,qs/aa
f,Qs/e

% -@

a, qo/h
C, /a3
€,0q4/0s

* 2states
® 6 stack symbols
® no reduction
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| Reduce or Not to Reduce? |

* Why is the size of the stack alphabet reported before reduction?

sTon—)@c@b@c@d@e%f

b,a1/q b, q0,1/%,3
d,qs/an d, 23/,
f,as/c f,Qu5/e
L ) s C7) & —{even)——(oa0)
a, q/q a, Go,1/ %,
¢, %/03 C,%,3/%,s
€,0q4/0s ©,Q45/A45
® 2states ® 2states
* 6 stack symbols ® 3 stack symbols
® no reduction ® 28.6% reduction (Oris it?)
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