
A new approach for showing termina-
tion of parameterized transition sys-
tems
Alpine Verification Meeting ’24
Roland Herrmann
University of Regensburg - Theoretical Computer Science

Joint work:

Philipp Rümmer

What I will talk about?

A transition system is broadly speaking just a set of states and transitions between
those states.

(Informal) Example: Token Passing

Consider n people standing in a row. Each of them can either hold a token (T) or not
(0). They can hand their token to their respective right neighbour, receive a token
from their left neighbour or stay without a token. For n = 4 an illustration of the
transitions can look as follows:

T000 → 0T00 → 00T0 → 000T

This will always stop when the token arrives at the rightmost position.

Question: How can we verify, whether a transition system terminates on any input?
Approach: Regular model checking techniques: Consider transition systems, which are
described by an automaton and exploit the automatic framework to construct an
automaton, that searches for a proof for termination automatically.1/22

Roland Herrmann

1/22

Regular Transition Systems
Definition

Definition: (Regular Transition System)

A regular transition system (RTS) is a pair (Σ, T), which consists of a finite set Σ and
a (length preserving) Σ− Σ-transducer, that is a deterministic finite automaton with
Σ× Σ as its alphabet. We call

• x ∈ Σ a state

• w ∈ Σ∗ a configuration

• u1 . . . un ⊗ v1 . . . vn := (u1, v1) . . . (un, vn) = (u1v1) · · · (unvn) ∈ L(T) a transition
from u to v

• the i − th position in a configuration the i − th agent

(Σ, T) describes infinitely many transition systems, with the length n ∈ N as a
parameter, hence RTS are a subset of parameterized transition systems.
Since T is length preserving and Σ finite, the set of reachable configurations is finite
⇒ (Σ, T) is weakly-finite.2/22

Roland Herrmann

2/22

Regular Transition Systems
Example

Example: Token Passing

• Σ = {T , 0}, T = “token” , 0 = “no token”

• T = (00)
∗ (T

0

) (
0
T

)
(00)

∗

For example

0T00

is a configuration for n = 4, the first, third and
fourth agent are in state “no token” , whereas the
second agent is in state “token”. The word
(00)

(
T
0

) (
0
T

)
(00) describes the only possible

transition 0T00 → 00T0

q0start

q1

q2

(00)(
T
0

)

(
0
T

)
(00)

Figure: T

3/22

Roland Herrmann

3/22

Inductive Invariants

How can we find invariants in RTS?

Usually: We want to construct an automaton I that describes an invariant (L(I)) as a
regular language. An invariant should satisfy

I(x) ∧ T (x , y) −→ I(y)

Problem: The construction of I is hard. The question if there exists an automaton I
is undecideable.
Solution: Describe invariants through words (instead of a whole automaton). Then
checking if a word describes an invariant reduces to whether the word is accepted by a
fixed automaton, that accepts words that describe invariants. This approach is due to
”Regular Model Checking Upside-Down: An Invariant-Based Approach”, Javier
Esparza, Mikhail Raskin, Christoph Welzel-Mohr.

4/22

Roland Herrmann

4/22

Inductive Invariants
Example

Statements on (Σ, T) are words in another alphabet Γ. A fixed Σ− Γ transducer V is
called an interpretation. A statement I ∈ Γ∗ holds for a configuration w ∈ Σ∗ if
|w | = |I | and w ⊗ I ∈ L(V).

Example: Token Passing

• Γ = 2Σ

• V = VTrap

Then 00T0 satisfies {T}{T}{T}{T} in
the interpretation VTrap. In everyday
language {T}n can be read as “there is at
least one token”.

q0start q1

wi /∈ Ii

wi ∈ Ii
true

Figure: VTrap

5/22

Roland Herrmann

5/22

Inductive Invariants
Construction of Automaton

Write I (x) if x ⊗ I ∈ V. The property of an invariant is then

∀x ,y∈Σ∗ I (x) ∧ T (x , y) −→ I (y)

Construct an automaton that accepts exactly those statements that satisfy this
formula.
→ get rid of universal quantifier by constructing the complement AC

ind first.
→ AC

ind accepts exactly those statements that are not an invariant, i.e.

∃x ,y∈Σ∗ I (x) ∧ T (x , y) ∧ ¬I (y)

6/22

Roland Herrmann

6/22

Inductive Invariants
Construction of Automaton

The construction of AC
ind reflects the formula for not being an inductive invariant.

QAC
ind

= QT︸︷︷︸
T (x ,y)

× QV︸︷︷︸
I (x)

× QV︸︷︷︸
I (y)

We have ((pT , p1, p2), Ii , (qT , q1, q2)) ∈ δAC
ind

iff there exist xi , yi such that

(pT , (xi , yi), qT) ∈ δT (T (x , y))

(p1, (xi , Ii), q1) ∈ δV (I (x))

(p2, (yi , Ii), q2) ∈ δV (I (y))

FAC
ind

= FT︸︷︷︸
T (x ,y)

× FV︸︷︷︸
I (x)

×QV \ FV︸ ︷︷ ︸
¬I (y)

All words accepted by Aind correspond to inductive invariants, e.g. {T}n for Token
passing and VTrap is an inductive invariant.7/22

Roland Herrmann

7/22

Statements
Towards termination

Can we adjust this setting (Γ,V) to prove termination?

• Γ = 2Σ×Σ

• V =? (VTrap is possible)

• Consider the induced relation
RI = {(u, v) ∈ Σ∗ × Σ∗ |
(u ⊗ v)⊗ I ∈ L(V)}

• T ⊆ RI

• “RI is a proof for
termination”

Example: Token passing

• Γ = P({(00) ,
(
T
T

)
,
(
T
0

)
,
(

0
T

)
})

• V = VTrap

• I = {
(
T
0

)
}4

• RI =
3⋃

n=0

(
Σ
Σ

)n (T
0

) (
Σ
Σ

)3−n ⊇ (T ∩ Σ4 × Σ4)

" RI is not a proof for termination here

8/22

Roland Herrmann

8/22

Termination
Proof Setup

In order to show that a RTS terminates, it suffices to find a well-founded relation on
the set of configurations that overapproximates the transition relation.
Weakly-finiteness gives the following result:

Lemma

R ⊆ S × S an irreflexive, transitive relation a finite set S (e.g. Σn), then R is
well-founded.

Proof conditions

Write R(x , y) ≡ true :⇔ (x , y) ∈ R. If I ∈ (2Σ×Σ)∗, RI has to be

1. irreflexive: RI (x , y) −→ x ̸= y

2. transitive: RI (x , y) ∧ RI (y , z) −→ RI (x , z)

3. containing the transition relation T (x , y) −→ RI (x , y).

We still lack an interpretation V!9/22

Roland Herrmann

9/22

Lexicographically ordered systems
Definition

Definition: Lexicographic order

Let >Σ be a strict order relation on Σ. Then the following induced strict order relation
is called lexicographic order relation

u1 . . . un >lex v1 . . . vm :⇔∃i ∈ {1, . . . , n}. (ui >Σ vi ∧ ∀j < i . uj = vj)

∨ (n > m ∧ u1 . . . um = v1 . . . vm).

Lexicographic orders are the way words are arranged in a dictionary. (T > 0 for Token
passing)

Example: Counting down in binary

If we consider 1 > 0, then counting down in binary is lexicographically ordered.

1000 >lex 0111 >lex 0110 >lex 0101 >lex 0100 >lex 0011 >lex 0010 >lex 0001 >lex 0000
10/22

Roland Herrmann

10/22

Lexicographically ordered systems
Proof setup

V should interpret statements I ∈ Γ∗ as lexicographic orders!

• ∆ = {(xx) | x ∈ Σ}
• Vlex accepts words w ⊗ I , where w
models a transition with respect to the
lexicographic order given by I

• Analogously to the inductive invariants
case, one can construct an automaton
Alex which accepts those statements
which satisfy the proof conditions
(irreflexive, transitive, contain T) with
respect to Vlex

q0start q1

sink

wi ∈ ∆

wi ∈ Ii \∆

wi /∈ Ii ∪∆

true

true

Figure: Vlex11/22

Roland Herrmann

11/22

Lexicographically ordered systems
Construction of search automaton

• I ∈ L(Alex) ⇔ I satisfies the proof conditions

• Γ = 2Σ×Σ is the alphabet of Alex

• proof conditions are (implicitly) universally quantified → construct complement
AC

lex to eliminate the existential quantifier and take complement again

• AC
lex accepts a statement I if there exists configurations x , y , z ∈ Σ∗, such that

RI fails to satisfy at least one of the proof conditions

QAC
lex

= QT︸︷︷︸
T (x ,y)

× Q=︸︷︷︸
x=y

× QVlex︸︷︷︸
RI (x ,y)

× QVlex︸︷︷︸
RI (y ,z)

× QVlex︸︷︷︸
RI (x ,z)

Each factor in QAC
lex

models one of the predicates occurring in the proof conditions.

12/22

Roland Herrmann

12/22

Lexicographically ordered systems
Construction of search automaton

The transition relation δAC
lex

is given by

((pT , p=, p1, p2, p3), Ii , (qT , q=, q1, q2, q3)) ∈ δAC
lex

if and only if there exist xi , yi , zi ∈ Σ, such that

(pT , (xi , yi , Ii), qT) ∈ δT (T (x , y))

(p=, (xi , yi), q=) ∈ δ= (x = y)

(p1, (xi , yi , Ii), q1) ∈ δVlex
(RI (x , y))

(p2, (yi , zi , Ii), q2) ∈ δVlex
(RI (y , z))

(p3, (xi , zi , Ii), q3) ∈ δVlex
(RI (x , z))

13/22

Roland Herrmann

13/22

Lexicographically ordered systems
Construction of search automaton

The accepting states correspond 1 : 1 to the negated proof conditions

(RI (x , y) ∧ x = y)︸ ︷︷ ︸
¬1.

∨ (RI (x , y) ∧ RI (y , z) ∧ ¬RI (x , z))︸ ︷︷ ︸
¬2.

∨ (T (x , y) ∧ ¬RI (x , y))︸ ︷︷ ︸
¬3.

.

FAC
lex

=QT × F= × FVlex
× QVlex

× QVlex
¬1.

∪ QT × Q= × FVlex
× FVlex

× (QVlex
\ FVlex

) ¬2.
∪ FT × Q= × (QVlex

\ FVlex
)× QVlex

× QVlex
¬3.

We summarize: AC
lex = (QAC

lex
, Γ, (sT , s=, sVlex

, sVlex
, sVlex

), δAC
lex
,FAC

lex
).

14/22

Roland Herrmann

14/22

Lexicographically ordered systems
Theorem

Theorem:

Let (Σ, T) be a RTS, AC
lex the corresponding automaton according to our construction

above. If AC
lex

C
= Alex has a word of every length, i.e. L(Alex) ∩Σn ̸= ∅ for all n ∈ N,

then (Σ, T) terminates.

For the Token passing example, we obtain {
(
T
0

)
}n ∈ Alex for all n ∈ N.

Corollary:

Let (Σ, T) be a lexicographically ordered RTS. Then Alex ∩ Σn ̸= ∅ for all n ∈ N.

Note that Alex does also prove RTS terminating, which allow different letterwise orders
at different positions, e.g. even agents counting down and odd agents counting up.

15/22

Roland Herrmann

15/22

Letterwise ordered systems
Motivating Example

Example: Polite Mexican Standoff

n armed agents are alive (state A) and each of them
wants to kill the others to be the only one left alive.
In order to bring the whole thing to a neat and tidy
end, they randomly pick two of them to transition
into a shooting state (S). After that one of them
transitions into a dead state (D) and the other goes
back to his alive state. The transitive closure of the
transition relation T is described on the right,
where Xi ∈ (A+ D)∗ for i ∈ {1, . . . , 3}

X1AX2DX3

X1AX2AX3 X1SX2SX3

X1DX2AX3

init

skipFirst

skipSecond

second

first

16/2216/22

Roland Herrmann

16/22

Letterwise ordered systems
Adjustments

Problem: The polite mexican standoff is
not lexicographically ordered.
Solution: Define VAll to detect changes at
all positions.

For a relation R ⊆ S × S we write

• x ≥R y :⇔ (x , y) ∈ R

• x >R y :⇔ (x , y) ∈ R ∧ (y , x) /∈ R

• x =R y :⇔ (x , y), (y , x) ∈ R

• Construct again a order relation on Σn

• An outer relation (induced by) A >1 D
can model the coarse structure.

• Loops A → S → A are possible at
some positions, the outer relation does
not need to distinguish them A =1 S

• All transitions are covered except init.
In the case x =1 y another relation
should cover init by A >2 S

q0start sink

xi ∈ Ii

xi /∈ Ii
true

Figure: VAll

17/22

Roland Herrmann

17/22

Letterwise ordered systems
Proof Conditions

Synthesize an irreflexive, transitive relation from two preorders (reflexive and
transitive), the “outer relation” R1 and the “inner relation” R2

x >3 y :⇔ x >1 y ∨ (x =1 y ∧ x >2 y)

Lemma:

Let R1, R2 be two preorders, R3 as above, then R3 is irreflexive and transitive.

Proof Conditions

If I1, I2 ∈ 2Σ×Σ, R1,R2 has to be

1. reflexive: x = y −→ Ri (x , y)

2. transitive: Ri (x , y) ∧ Ri (y , z) −→ Ri (x , z)

3. containing the transition relation:
T (x , y) → R1(x , y) ∧ ¬R1(y , x) ∨ (R1(x , y) ∧ R1(y , x) ∧ R2(x , y) ∧ ¬R2(y , x))

18/22

Roland Herrmann

18/22

Letterwise ordered systems
Theorems

A corresponding automaton AAll , that accepts exactly those pairs (I1, I2) that satisfy
the proof conditions can be constructed analogously to Alex . Note that now we have
2Σ×Σ × 2Σ×Σ as alphabet and eight copies of VAll for the predicates.

Theorem:

Let (Σ, T) be a RTS, AAll the
corresponding automaton
according to our construction. If
AAll has a word of every length,
i.e., L(AAll) ∩ Σn ̸= ∅ for all
n ∈ N, then (Σ, T) terminates.

One can iterate this process with n ∈ N nested
relations

x >n+1 y : ⇔ x >1 y

∨ (x =1 y ∧ x >2 y)

∨ (x =1 y ∧ x =2 y ∧ x >3 y) ∨ . . .

∨ (
n−1∧
i=1

x =i y ∧ x >n y)

19/22

Roland Herrmann

19/22

Letterwise ordered systems
Example

Example: Polite Mexican Standoff

For the polite mexican standoff, the following words are accepted by AAll for all n ∈ N

{
(
A
A

)
,
(
S
S

)
,
(
D
D

)
,
(
A
S

)
,
(
S
A

)
,
(
A
D

)
,
(
S
D

)
}n ⊗ {

(
A
A

)
,
(
S
S

)
,
(
D
D

)
,
(
A
S

)
,
(
S
D

)
,
(
A
D

)
,
(
D
S

)
}n

20/22

Roland Herrmann

20/22

Conclusion

• The construction of the desired automaton follows a general pattern (once
reasonable V and proof conditions are found)

• " Many choices of V and Γ result in empty or universal automata.

• " We need to complement our automaton at some point to get rid of the
universal quantifier of the proof conditions, hence it is feasible to use parametric
automata to handle infinite alphabets Σ.

• The whole setup with Γ and V can possibly be used to tackle other verification
problems due to its flexibility.

21/22

Roland Herrmann

21/22

A new approach for showing termination of
parameterized transition systems

Thank you for listening !
Any Questions ?

