Verifying Unsolvability in Classical Planning with VeriPB

Simon Dold Tanja Schindler Jakob Nordström Malte Helmert

University of Basel, University of Copenhagen

AVM 2024

Planning Task $\Pi = \langle V, I, A, \gamma \rangle$

- state variables V
- initial state I
- actions A
- goal γ

Planning Task $\Pi = \langle V, I, A, \gamma \rangle$

- state variables $V = \{money, cake, eaten\}$
- initial state I
- actions A
- goal γ

Planning Task $\Pi = \langle V, I, A, \gamma \rangle$

- state variables $V = \{money, cake, eaten\}$
- initial state $I = \{money, \overline{cake}, \overline{eaten}\}$
- actions A
- goal γ

Planning Task $\Pi = \langle V, I, A, \gamma \rangle$

- state variables $V = \{money, cake, eaten\}$
- initial state $I = \{money, \overline{cake}, \overline{eaten}\}$

• actions
$$A = \{buy, sell, eat\}$$

• goal γ

Planning Task $\Pi = \langle V, I, A, \gamma \rangle$

- state variables $V = \{money, cake, eaten\}$
- initial state $I = \{money, \overline{cake}, \overline{eaten}\}$

• actions
$$A = \{buy, sell, eat\}$$

• goal $\gamma = \{cake, eaten\}$

Each action has a precondition, add effect, delete effect

	pre	add	del
buy	{money}	${cake}$	{money}
sell	{cake}	$\{money\}$	${cake}$
eat	${cake}$	$\{eaten\}$	${cake}$

Task induces a directed graph called state space

Task induces a directed graph called state space

Use a planner to find a sequence that leads from the initial state to the goal. MyPlanner 1.0:

• [buy, eat, buy]

Don't trust it? Verify it by executing the plan.

Plan: [buy, eat, buy]

Use another planner to find a sequence that leads from the initial state to the goal. MyPlanner 2.0:

• unsolvable

How to verify? With a Certificate.

Outlook 0

Verification of the Planner Result

unsolvable?

Inductive Set

Inductive Set

If state s is a member of inductive set $\varphi,$ then all successors of s are members of $\varphi,$ too.

Idea based on Salomé Eriksson Certifying Planning Systems: Witnesses for Unsolvability (2019)

- Find a set φ (with compact representation) and prove that
 - φ contains the initial state
 - φ is an inductive set
 - φ contains no goal state
- Such a set φ exists if and only if the task is unsolvable.

- Translate the planning task and φ into pseudo boolean constraints (PBCs) $\sum a_i \cdot \ell_i \ge A$ with literals ℓ_i and $a_i, A \in \mathbb{N}$.
- $2 \cdot \varphi + money + cake + eaten \ge 2$
- $\overline{\varphi} + \overline{money} + \overline{cake} + \overline{eaten} \ge 2$
- $4 \cdot \overline{buy} + money + cake' + \overline{money'} + eq_{eaten} \ge 4$

- Use extended cutting plane proof system to deduce further constraints by
 - Addition of two PBCs.
 - Multiplication of a PBC.
 - Division of a PBC with rounding up.
 - Reification (introducing auxillary variables).

- We construct φ and the proof during the search.
 - For each search technique we have to come up with a fitting algorithm.
- This proof does not certify the planner.
- Only certifies this particular result.
- It can be checked by an independent party that knows nothing about planning.
 - For this we use VeriPB.¹

¹Bart Bogaerts, Stephan Gocht, Ciaran McCreesh, Jakob Nordström *Certified Dominance and Symmetry Breaking for Combinatorial Optimisation.* (JAIR 2023)

- Checks proof in the extended cutting plane proof system.
- The core checker (CakePB²) is verified by HOL4 ³.

 $^2\mathsf{Bart}$ Bogaerts, Ciaran McCreesh, Magnus O. Myreen, Jakob Nordström, Andy Oertel, and Yong Kiam Tan.

Documentation of VeriPB and CakePB for the SAT Competition 2023 (SAT Competition 2023)

³Norrish, M., Slind, K.: *HOL-4 manuals* (1998-2008), http://hol.sourceforge.net/

S. Dold

Outlook

- Next steps
 - Implement task to PBCs translation
 - Implement proof logging for naive search
- Future steps
 - Certify optimality if actions have cost
 - Argue with fancier algorithms
 - Abstractions, relaxations
 - Admissible heuristics

- (1) from framework: $\overline{money} \ge 0$
- (2) from task: $3 \cdot \overline{I} + money + \overline{cake} + \overline{eaten} \ge 3$
- (3) from φ : $2 \cdot \varphi + money + cake + eaten \ge 2$

- (1) from framework: $\overline{money} \ge 0$
- (2) from task: $3 \cdot \overline{I} + money + \overline{cake} + \overline{eaten} \ge 3$
- (3) from φ : $2 \cdot \varphi + money + cake + eaten \ge 2$
- (4) via (2)+(3): $3 \cdot \overline{I} + 2 \cdot \varphi + 2 \cdot money + 1 + 1 \ge 5$
- (5) via (4)+2·(1): $3 \cdot \overline{I} + 2 \cdot \varphi \ge 1$
- (6) via (5)/3: $\lceil \frac{3}{3} \rceil \cdot \overline{I} + \lceil \frac{2}{3} \rceil \cdot \varphi \ge \lceil \frac{1}{3} \rceil$ $\overline{I} + \varphi \ge 1$

In VeriPB this would look like:

- 1 ~money >= 0;
- 3 ~I 1 money 1 ~cake 1 ~eaten >= 3;
- 2 phi 1 money 1 cake 1 eaten >= 2;

In VeriPB this would look like:

- 1 ~money >= 0;
- 3 ~I 1 money 1 ~cake 1 ~eaten >= 3;
- 2 phi 1 money 1 cake 1 eaten >= 2;
- pol 2 3 + 1 2 * + 3 d
- e 1 ~I 1 phi >= 1 ; -1

Appendix 00●0

Example subproof with RUP

• (1):
$$4 \cdot \overline{buy} + money + cake' + \overline{money'} + eq_{eaten} \ge 4$$

• (2):
$$2 \cdot \overline{\varphi} + \overline{money} + \overline{cake} + \overline{eaten} \ge 2$$

• (3):
$$\overline{eq_{eaten}} + eaten + \overline{eaten'} \ge 1$$

• (4):
$$2 \cdot \varphi' + money' + cake' + eaten' \ge 2$$

Appendix 00●0

Example subproof with RUP

• (1):
$$4 \cdot \overline{buy} + money + cake' + \overline{money'} + eq_{eaten} \ge 4$$

• (2):
$$2 \cdot \overline{\varphi} + \overline{money} + \overline{cake} + \overline{eaten} \ge 2$$

• (3):
$$\overline{eq_{eaten}} + eaten + \overline{eaten'} \ge 1$$

• (4):
$$2 \cdot \varphi' + money' + cake' + eaten' \ge 2$$

Appendix 00●0

Example subproof with RUP

• (1):
$$4 \cdot \overline{buy} + money + cake' + \overline{money'} + eq_{eaten} \ge 4$$

• (2):
$$2 \cdot \overline{\varphi} + \overline{money} + \overline{cake} + \overline{eaten} \ge 2$$

• (3):
$$\overline{eq_{eaten}} + eaten + \overline{eaten'} \ge 1$$

• (4):
$$2 \cdot \varphi' + money' + cake' + eaten' \ge 2$$

•
$$\varphi \geq 1$$
, $buy \geq 1$, $\overline{\varphi'} \geq 1$ via assumption

• (1):
$$4 \cdot \overline{buy} + money + cake' + \overline{money'} + eq_{eaten} \ge 4$$

• (2):
$$2 \cdot \overline{\varphi} + \overline{money} + \overline{cake} + \overline{eaten} \ge 2$$

• (3):
$$\overline{eq_{eaten}} + eaten + \overline{eaten'} \ge 1$$

• (4):
$$2 \cdot \varphi' + money' + cake' + eaten' \ge 2$$

•
$$\varphi \geq 1$$
, $buy \geq 1$, $\overline{\varphi'} \geq 1$ via assumption

• (1):
$$4 \cdot \overline{buy} + money + cake' + \overline{money'} + eq_{eaten} \ge 4$$

• (2):
$$2 \cdot \overline{\varphi} + \overline{money} + \overline{cake} + \overline{eaten} \ge 2$$

• (3):
$$\overline{eq_{eaten}} + eaten + \overline{eaten'} \ge 1$$

• (4):
$$2 \cdot \varphi' + money' + cake' + eaten' \ge 2$$

•
$$\varphi \geq 1$$
, $buy \geq 1$, $\overline{\varphi'} \geq 1$ via assumption

•
$$money \ge 1$$
, $\overline{money'} \ge 1$, $eq_{eaten} \ge 1$ via (1)

• (1):
$$4 \cdot \overline{buy} + money + cake' + \overline{money'} + eq_{eaten} \ge 4$$

• (2):
$$2 \cdot \overline{\varphi} + \overline{money} + \overline{cake} + \overline{eaten} \ge 2$$

• (3):
$$\overline{eq_{eaten}} + eaten + \overline{eaten'} \ge 1$$

• (4):
$$2 \cdot \varphi' + money' + cake' + eaten' \ge 2$$

•
$$\varphi \geq 1$$
, $buy \geq 1$, $\overline{\varphi'} \geq 1$ via assumption

•
$$money \ge 1$$
, $\overline{money'} \ge 1$, $eq_{eaten} \ge 1$ via (1)

• (1):
$$4 \cdot \overline{buy} + money + cake' + \overline{money'} + eq_{eaten} \ge 4$$

• (2):
$$2 \cdot \overline{\varphi} + \overline{money} + \overline{cake} + \overline{eaten} \ge 2$$

• (3):
$$\overline{eq_{eaten}} + eaten + \overline{eaten'} \ge 1$$

• (4):
$$2 \cdot \varphi' + money' + cake' + eaten' \ge 2$$

•
$$\varphi \geq 1$$
, $buy \geq 1$, $\overline{\varphi'} \geq 1$ via assumption

•
$$money \ge 1$$
, $\overline{money'} \ge 1$, $eq_{eaten} \ge 1$ via (1)

•
$$\overline{cake} \ge 1$$
, $\overline{eaten} \ge 1$ via (2)

• (1):
$$4 \cdot \overline{buy} + money + cake' + \overline{money'} + eq_{eaten} \ge 4$$

• (2):
$$2 \cdot \overline{\varphi} + \overline{money} + \overline{cake} + \overline{eaten} \ge 2$$

• (3):
$$\overline{eq_{eaten}} + eaten + \overline{eaten'} \ge 1$$

• (4):
$$2 \cdot \varphi' + money' + cake' + eaten' \ge 2$$

•
$$\varphi \geq 1$$
, $buy \geq 1$, $\overline{\varphi'} \geq 1$ via assumption

•
$$money \ge 1$$
, $money' \ge 1$, $eq_{eaten} \ge 1$ via (1)

•
$$\overline{cake} \ge 1$$
, $\overline{eaten} \ge 1$ via (2)

• (1):
$$4 \cdot \overline{buy} + money + cake' + \overline{money'} + eq_{eaten} \ge 4$$

• (2):
$$2 \cdot \overline{\varphi} + \overline{money} + \overline{cake} + \overline{eaten} \ge 2$$

• (3):
$$\overline{eq_{eaten}} + eaten + \overline{eaten'} \ge 1$$

• (4):
$$2 \cdot \varphi' + money' + cake' + eaten' \ge 2$$

•
$$\varphi \geq 1$$
, $buy \geq 1$, $\overline{\varphi'} \geq 1$ via assumption

•
$$money \ge 1$$
, $\overline{money'} \ge 1$, $eq_{eaten} \ge 1$ via (1)

•
$$\overline{cake} \ge 1$$
, $\overline{eaten} \ge 1$ via (2)

•
$$\overline{eaten'} \ge 1$$
 via (3)

• (1):
$$4 \cdot \overline{buy} + money + cake' + \overline{money'} + eq_{eaten} \ge 4$$

• (2):
$$2 \cdot \overline{\varphi} + \overline{money} + \overline{cake} + \overline{eaten} \ge 2$$

• (3):
$$\overline{eq_{eaten}} + eaten + \overline{eaten'} \ge 1$$

• (4):
$$2 \cdot \varphi' + money' + cake' + eaten' \ge 2$$

•
$$\varphi \geq 1$$
, $buy \geq 1$, $\overline{\varphi'} \geq 1$ via assumption

•
$$money \ge 1$$
, $\overline{money'} \ge 1$, $eq_{eaten} \ge 1$ via (1)

•
$$\overline{cake} \ge 1$$
, $\overline{eaten} \ge 1$ via (2)

•
$$\overline{eaten'} \ge 1$$
 via (3)

• (1):
$$4 \cdot \overline{buy} + money + cake' + \overline{money'} + eq_{eaten} \ge 4$$

• (2):
$$2 \cdot \overline{\varphi} + \overline{money} + \overline{cake} + \overline{eaten} \ge 2$$

• (3):
$$\overline{eq_{eaten}} + eaten + \overline{eaten'} \ge 1$$

• (4):
$$2 \cdot \varphi' + money' + cake' + eaten' \ge 2$$

•
$$\varphi \geq 1$$
, $buy \geq 1$, $\overline{\varphi'} \geq 1$ via assumption

•
$$money \ge 1$$
, $\overline{money'} \ge 1$, $eq_{eaten} \ge 1$ via (1)

•
$$\overline{cake} \ge 1$$
, $\overline{eaten} \ge 1$ via (2)

•
$$\overline{eaten'} \ge 1$$
 via (3)

•
$$\varphi' \ge 1$$
 via (4)

• (1):
$$4 \cdot \overline{buy} + money + cake' + \overline{money'} + eq_{eaten} \ge 4$$

• (2):
$$2 \cdot \overline{\varphi} + \overline{money} + \overline{cake} + \overline{eaten} \ge 2$$

• (3):
$$\overline{eq_{eaten}} + eaten + \overline{eaten'} \ge 1$$

• (4):
$$2 \cdot \varphi' + money' + cake' + eaten' \ge 2$$

RUP with assumption $\varphi + buy + \overline{\varphi'} \geq 3$

- $\varphi \geq 1$, $buy \geq 1$, $\overline{\varphi'} \geq 1$ via assumption
- $money \ge 1$, $\overline{money'} \ge 1$, $eq_{eaten} \ge 1$ via (1)

•
$$\overline{cake} \ge 1$$
, $\overline{eaten} \ge 1$ via (2)

• $\overline{eaten'} \ge 1$ via (3)

•
$$\varphi' \ge 1$$
 via (4)

• (1):
$$4 \cdot \overline{buy} + money + cake' + \overline{money'} + eq_{eaten} \ge 4$$

• (2):
$$2 \cdot \overline{\varphi} + \overline{money} + \overline{cake} + \overline{eaten} \ge 2$$

• (3):
$$\overline{eq_{eaten}} + eaten + \overline{eaten'} \ge 1$$

• (4):
$$2 \cdot \varphi' + money' + cake' + eaten' \ge 2$$

RUP with assumption $\varphi + buy + \overline{\varphi'} \ge 3$

- $\varphi \geq 1$, $buy \geq 1$, $\overline{\varphi'} \geq 1$ via assumption
- $money \ge 1$, $\overline{money'} \ge 1$, $eq_{eaten} \ge 1$ via (1)

•
$$\overline{cake} \ge 1$$
, $\overline{eaten} \ge 1$ via (2)

• $\overline{eaten'} \ge 1$ via (3)

•
$$\varphi' \ge 1$$
 via (4)

 $\overline{\varphi} + \overline{buy} + \varphi' \ge 1$

In VeriPB this would look like

• rup 1 ~phi 1 ~buy 1 phi' >= 1 ;