Verifying Unsolvability in Classical Planning with VeriPB

Simon Dold Tanja Schindler Jakob Nordström Malte Helmert

University of Basel, University of Copenhagen

AVM 2024

Planning Task $\Pi = \langle V, I, A, \gamma \rangle$

- \bullet state variables V
- \bullet initial state I
- actions A
- goal γ

Planning Task $\Pi = \langle V, I, A, \gamma \rangle$

- state variables $V = \{money, cake, eaten\}$
- \bullet initial state I
- actions A
- goal γ

Planning Task $\Pi = \langle V, I, A, \gamma \rangle$

- state variables $V = \{money, cake, eaten\}$
- initial state $I = \{money, cake, eaten\}$
- actions A
- goal γ

Planning Task $\Pi = \langle V, I, A, \gamma \rangle$

- state variables $V = \{money, cake, eaten\}$
- initial state $I = \{money, cake, eaten\}$

• actions
$$
A = \{buy, sell, eat\}
$$

• goal γ

Planning Task $\Pi = \langle V, I, A, \gamma \rangle$

- state variables $V = \{money, cake, eaten\}$
- initial state $I = \{money, cake, eaten\}$

\n- actions
$$
A = \{buy, sell, eat\}
$$
\n

• goal $\gamma = \{ cake, eaten\}$

Each action has a precondition, add effect, delete effect

Task induces a directed graph called state space

Task induces a directed graph called state space

Use a planner to find a sequence that leads from the initial state to the goal. MyPlanner 1.0:

• $[buy, eat, buy]$

Don't trust it? Verify it by executing the plan.

Plan: [buy, eat, buy]

Use another planner to find a sequence that leads from the initial state to the goal. MyPlanner 2.0:

• unsolvable

How to verify? With a Certificate.

unsolvable?

Inductive Set

Inductive Set

If state s is a member of inductive set φ , then all successors of s are members of φ , too.

Idea based on Salomé Eriksson Certifying Planning Systems: Witnesses for Unsolvability (2019)

- Find a set φ (with compact representation) and prove that
	- φ contains the initial state
	- φ is an inductive set
	- φ contains no goal state
- Such a set φ exists if and only if the task is unsolvable.

- Translate the planning task and φ into pseudo boolean constraints (PBCs) $\sum a_i \cdot \ell_i \geq A$ with literals ℓ_i and $a_i, A \in \mathbb{N}$.
- 2 · φ + money + cake + eaten > 2
- $\overline{\varphi}$ + \overline{money} + \overline{calc} + \overline{eaten} > 2
- $4 \cdot \overline{b u v} + m \overline{o} n \overline{e v} + c \overline{a} k e' + \overline{m} \overline{o} n \overline{e v'} + e \overline{a} \overline{e} \overline{a} t e n} > 4$

- Use extended cutting plane proof system to deduce further constraints by
	- Addition of two PBCs.
	- Multiplication of a PBC.
	- Division of a PBC with rounding up.
	- Reification (introducing auxillary variables).

- We construct φ and the proof during the search.
	- For each search technique we have to come up with a fitting algorithm.
- This proof does not certify the planner.
- Only certifies this particular result.
- It can be checked by an independent party that knows nothing about planning.
	- For this we use VeriPB. $¹$ </sup>

 $1B$ art Bogaerts, Stephan Gocht, Ciaran McCreesh, Jakob Nordström Certified Dominance and Symmetry Breaking for Combinatorial Optimisation. (JAIR 2023)

- Checks proof in the extended cutting plane proof system.
- The core checker (CakePB²) is verified by HOL4 3 .

 $2B$ art Bogaerts, Ciaran McCreesh, Magnus O. Myreen, Jakob Nordström, Andy Oertel, and Yong Kiam Tan.

Documentation of VeriPB and CakePB for the SAT Competition 2023 (SAT Competition 2023)

 3 Norrish, M., Slind, K.: HOL-4 manuals (1998-2008), http://hol.sourceforge.net/

Outlook

- Next steps
	- Implement task to PBCs translation
	- Implement proof logging for naive search
- Future steps
	- Certify optimality if actions have cost
	- Argue with fancier algorithms
		- Abstractions, relaxations
		- Admissible heuristics

- • (1) from framework: $\overline{money} \geq 0$
- (2) from task: $3 \cdot \overline{I} + money + \overline{calc} + \overline{eaten} \ge 3$
- (3) from φ : $2 \cdot \varphi + money + cake + eaten \geq 2$

- • (1) from framework: $\overline{money} \geq 0$
- (2) from task: $3 \cdot \overline{I} + money + \overline{calc} + \overline{eaten} \ge 3$
- (3) from φ : $2 \cdot \varphi + money + cake + eaten \geq 2$
- (4) via (2)+(3): $3 \cdot \overline{I} + 2 \cdot \varphi + 2 \cdot money + 1 + 1 > 5$
- (5) via (4)+2·(1): $3 \cdot \overline{I} + 2 \cdot \varphi > 1$
- (6) via (5)/3: $\lceil \frac{3}{3} \rceil$ $\frac{3}{3}$] $\cdot \overline{I}$ + $\lceil \frac{2}{3}$ $\frac{2}{3}$] $\cdot \varphi \geq \lceil \frac{1}{3} \rceil$ $\overline{I} + \varphi > 1$

In VeriPB this would look like:

- \bullet 1 $\text{"money} > = 0$;
- 3 $\tilde{1}$ 1 money 1 \tilde{c} cake 1 \tilde{c} eaten >= 3;
- 2 phi 1 money 1 cake 1 eaten >= 2;

In VeriPB this would look like:

- \bullet 1 \sim money >= 0;
- 3 $\tilde{1}$ 1 money 1 \tilde{c} cake 1 \tilde{c} eaten >= 3;
- 2 phi 1 money 1 cake 1 eaten $>= 2$;
- pol 2 3 + 1 2 * + 3 d
- e 1 [~]I 1 phi >= 1 ; -1

• (1):
$$
4 \cdot \overline{buy} + money + cake' + \overline{money'} + eq_{eaten} \ge 4
$$

• (2):
$$
2 \cdot \overline{\varphi} + \overline{money} + \overline{cake} + \overline{eaten} \geq 2
$$

• (3):
$$
\overline{eq_{eaten}} + eaten + \overline{eaten'} \ge 1
$$

• (4):
$$
2 \cdot \varphi' + money' + cake' + eaten' \ge 2
$$

\n- \n (1): \n
$$
4 \cdot \overline{buy} + money + cake' + \overline{money'} + eq_{\text{eaten}} \geq 4
$$
\n
\n- \n (2): \n $2 \cdot \overline{\varphi} + \overline{money} + \overline{cake} + \overline{eaten} \geq 2$ \n
\n- \n (3): \n $\overline{eq_{\text{eaten}}} + \text{eaten} + \overline{eaten'} \geq 1$ \n
\n- \n (4): \n $2 \cdot \varphi' + money' + cake' + \text{eaten'} \geq 2$ \n
\n- \n RUP with assumption \n $\varphi + buy + \overline{\varphi'} \geq 3$ \n
\n

\n- \n (1): \n
$$
4 \cdot \overline{buy} + money + cake' + \overline{money'} + eq_{\text{eaten}} \geq 4
$$
\n
\n- \n (2): \n $2 \cdot \overline{\varphi} + \overline{money} + \overline{cake} + \overline{eaten} \geq 2$ \n
\n- \n (3): \n $\overline{eq_{\text{eaten}}} + \overline{eaten} + \overline{eaten'} \geq 1$ \n
\n- \n (4): \n $2 \cdot \varphi' + money' + cake' + \overline{eaten'} \geq 2$ \n
\n- \n RUP with assumption \n $\varphi + buy + \overline{\varphi'} \geq 3$ \n
\n

•
$$
\varphi \ge 1
$$
, $buy \ge 1$, $\overline{\varphi'} \ge 1$ via assumption

\n- \n (1): \n
$$
4 \cdot \overline{buy} + money + cake' + \overline{money'} + eq_{\text{eaten}} \geq 4
$$
\n
\n- \n (2): \n $2 \cdot \overline{\varphi} + \overline{money} + \overline{cate} + \overline{eaten} \geq 2$ \n
\n- \n (3): \n $\overline{eq_{\text{eaten}}} + \text{eaten} + \overline{eaten'} \geq 1$ \n
\n- \n (4): \n $2 \cdot \varphi' + money' + cake' + \text{eaten'} \geq 2$ \n
\n- \n RUP with assumption \n $\varphi + buy + \overline{\varphi'} \geq 3$ \n
\n

•
$$
\varphi \ge 1
$$
, $buy \ge 1$, $\overline{\varphi'} \ge 1$ via assumption

Example subproof with RUP

• (1):
$$
4 \cdot \overline{buy} + money + cake' + \overline{money'} + eq_{eaten} \ge 4
$$

• (2):
$$
2 \cdot \overline{\varphi} + \overline{money} + \overline{cake} + \overline{eaten} \geq 2
$$

• (3):
$$
\overline{eq_{eaten}} + eaten + \overline{eaten'} \ge 1
$$

• (4):
$$
2 \cdot \varphi' + money' + cake' + eaten' \geq 2
$$

•
$$
\varphi \ge 1
$$
, $buy \ge 1$, $\overline{\varphi'} \ge 1$ via assumption

•
$$
money \geq 1
$$
, $\overline{money'} \geq 1$, $eq_{eaten} \geq 1$ via (1)

Example subproof with RUP

• (1):
$$
4 \cdot \overline{buy} + money + cake' + \overline{money'} + eq_{eaten} \ge 4
$$

• (2):
$$
2 \cdot \overline{\varphi} + \overline{money} + \overline{cake} + \overline{eaten} \geq 2
$$

• (3):
$$
\overline{eq_{eaten}} + eaten + \overline{eaten'} \ge 1
$$

• (4):
$$
2 \cdot \varphi' + money' + cake' + eaten' \ge 2
$$

•
$$
\varphi \ge 1
$$
, $buy \ge 1$, $\overline{\varphi'} \ge 1$ via assumption

•
$$
money \geq 1
$$
, $\overline{money'} \geq 1$, $eq_{eaten} \geq 1$ via (1)

[Appendix](#page-21-0)

<u>OOOO</u>

Example subproof with RUP

• (1):
$$
4 \cdot \overline{buy} + money + cake' + \overline{money'} + eq_{eaten} \ge 4
$$

• (2):
$$
2 \cdot \overline{\varphi} + \overline{money} + \overline{cake} + \overline{eaten} \geq 2
$$

• (3):
$$
\overline{eq_{eaten}} + eaten + \overline{eaten'} \ge 1
$$

• (4):
$$
2 \cdot \varphi' + money' + cake' + eaten' \ge 2
$$

- $\varphi \geq 1$, $buy \geq 1$, $\overline{\varphi'} \geq 1$ via assumption
- money ≥ 1 , $\overline{money'} \geq 1$, $eq_{eaten} \geq 1$ via (1)

•
$$
\overline{calc} \geq 1
$$
, $\overline{eaten} \geq 1$ via (2)

Example subproof with RUP

• (1):
$$
4 \cdot \overline{buy} + money + cake' + \overline{money'} + eq_{\text{eaten}} \ge 4
$$

• (2):
$$
2 \cdot \overline{\varphi} + \overline{money} + \overline{cake} + \overline{eaten} \geq 2
$$

• (3):
$$
\overline{eq_{eaten}} + eaten + \overline{eaten'} \ge 1
$$

• (4):
$$
2 \cdot \varphi' + money' + cake' + eaten' \geq 2
$$

•
$$
\varphi \ge 1
$$
, $buy \ge 1$, $\overline{\varphi'} \ge 1$ via assumption

•
$$
money \geq 1
$$
, $\overline{money'} \geq 1$, $eq_{eaten} \geq 1$ via (1)

•
$$
\overline{calc} \geq 1
$$
, $\overline{eaten} \geq 1$ via (2)

Example subproof with RUP

• (1):
$$
4 \cdot \overline{buy} + money + cake' + \overline{money'} + eq_{eaten} \ge 4
$$

• (2):
$$
2 \cdot \overline{\varphi} + \overline{money} + \overline{cake} + \overline{eaten} \geq 2
$$

• (3):
$$
\overline{eq_{eaten}} + eaten + \overline{eaten'} \ge 1
$$

• (4):
$$
2 \cdot \varphi' + money' + cake' + eaten' \geq 2
$$

•
$$
\varphi \ge 1
$$
, $buy \ge 1$, $\overline{\varphi'} \ge 1$ via assumption

•
$$
money \geq 1
$$
, $\overline{money'} \geq 1$, $eq_{eaten} \geq 1$ via (1)

•
$$
\overline{calc} \geq 1
$$
, $\overline{eaten} \geq 1$ via (2)

•
$$
\overline{eaten'} \geq 1
$$
 via (3)

Example subproof with RUP

• (1):
$$
4 \cdot \overline{buy} + money + cake' + \overline{money'} + eq_{eaten} \ge 4
$$

• (2):
$$
2 \cdot \overline{\varphi} + \overline{money} + \overline{cake} + \overline{eaten} \geq 2
$$

• (3):
$$
\overline{eq_{eaten}} + eaten + \overline{eaten'} \ge 1
$$

• (4):
$$
2 \cdot \varphi' + \text{money'} + \text{cake'} + \text{eaten'} \geq 2
$$

- $\varphi \geq 1$, $buy \geq 1$, $\overline{\varphi'} \geq 1$ via assumption
- money ≥ 1 , $\overline{money'} \geq 1$, $eq_{eaten} \geq 1$ via (1)

•
$$
\overline{calc} \geq 1
$$
, $\overline{eaten} \geq 1$ via (2)

•
$$
\overline{eaten'} \geq 1
$$
 via (3)

Example subproof with RUP

• (1):
$$
4 \cdot \overline{buy} + money + cake' + \overline{money'} + eq_{eaten} \ge 4
$$

• (2):
$$
2 \cdot \overline{\varphi} + \overline{money} + \overline{cake} + \overline{eaten} \geq 2
$$

• (3):
$$
\overline{eq_{eaten}} + eaten + \overline{eaten'} \ge 1
$$

• (4):
$$
2 \cdot \varphi' + \text{money'} + \text{cake'} + \text{eaten'} \geq 2
$$

•
$$
\varphi \ge 1
$$
, $buy \ge 1$, $\overline{\varphi'} \ge 1$ via assumption

•
$$
money \geq 1
$$
, $\overline{money'} \geq 1$, $eq_{eaten} \geq 1$ via (1)

•
$$
\overline{calc} \geq 1
$$
, $\overline{eaten} \geq 1$ via (2)

•
$$
\overline{eaten'} \geq 1
$$
 via (3)

$$
\bullet \ \varphi' \geq 1 \text{ via (4)}
$$

Example subproof with RUP

• (1):
$$
4 \cdot \overline{buy} + money + cake' + \overline{money'} + eq_{eaten} \ge 4
$$

• (2):
$$
2 \cdot \overline{\varphi} + \overline{money} + \overline{cake} + \overline{eaten} \geq 2
$$

• (3)
$$
\overline{eq_{eaten}} + eaten + \overline{eaten'} \ge 1
$$

• (4):
$$
2 \cdot \varphi' + \text{money'} + \text{cake'} + \text{eaten'} \geq 2
$$

RUP with assumption $\varphi + b u y + \overline{\varphi'} \geq 3$

• $\varphi \geq 1$, $buy \geq 1$, $\overline{\varphi'} \geq 1$ via assumption

•
$$
money \geq 1
$$
, $\overline{money'} \geq 1$, $eq_{eaten} \geq 1$ via (1)

•
$$
\overline{calc} \geq 1
$$
, $\overline{eaten} \geq 1$ via (2)

•
$$
\overline{eaten'} \geq 1
$$
 via (3)

$$
\bullet \ \varphi' \geq 1 \text{ via (4)}
$$

[Appendix](#page-21-0)

<u>OOOO</u>

Example subproof with RUP

• (1):
$$
4 \cdot \overline{buy} + money + cake' + \overline{money'} + eq_{eaten} \ge 4
$$

• (2):
$$
2 \cdot \overline{\varphi} + \overline{money} + \overline{cake} + \overline{eaten} \geq 2
$$

• (3):
$$
\overline{eq_{eaten}} + eaten + \overline{eaten'} \ge 1
$$

• (4):
$$
2 \cdot \varphi' + \text{money'} + \text{cake'} + \text{eaten'} \geq 2
$$

RUP with assumption $\varphi + b u y + \overline{\varphi'} \geq 3$

• $\varphi \geq 1$, $buy \geq 1$, $\overline{\varphi'} \geq 1$ via assumption

•
$$
money \geq 1
$$
, $\overline{money'} \geq 1$, $eq_{eaten} \geq 1$ via (1)

•
$$
\overline{calc} \geq 1
$$
, $\overline{eaten} \geq 1$ via (2)

•
$$
\overline{eaten'} \geq 1
$$
 via (3)

•
$$
\varphi' \ge 1
$$
 via (4)

 $\overline{\varphi} + \overline{buy} + \varphi' \ge 1$

Example subproof with RUP

In VeriPB this would look like

• rup 1 \degree phi 1 \degree buy 1 phi' >= 1;