Hierarchical Stochastic SAT and Quality Assessment of Logic Locking

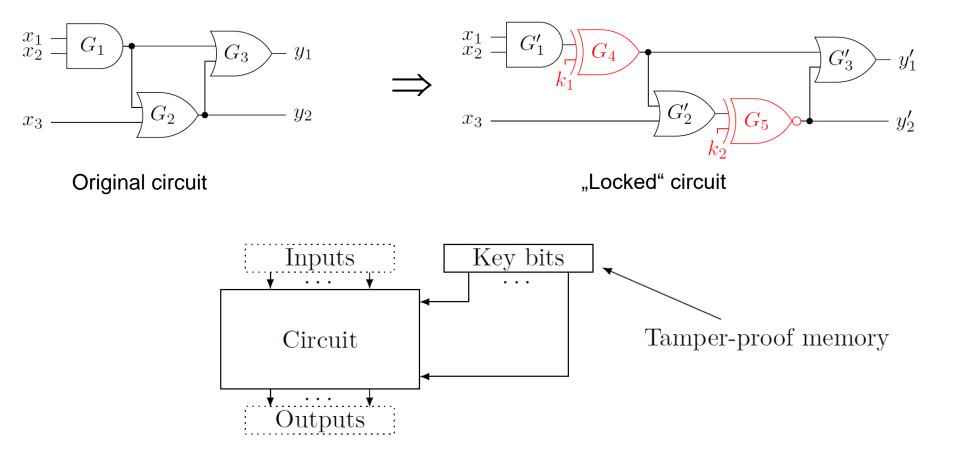
Alpine Verification Meeting 2024, originally at SAT'24

Christoph Scholl, Tobias Seufert, Fabian Siegwolf

Department of Computer Science University of Freiburg Germany

1. Introduction to Logic Locking

 Logic Locking protects Integrated Circuits (ICs) from unauthorized usage (e.g., overproduction from untrusted foundry)



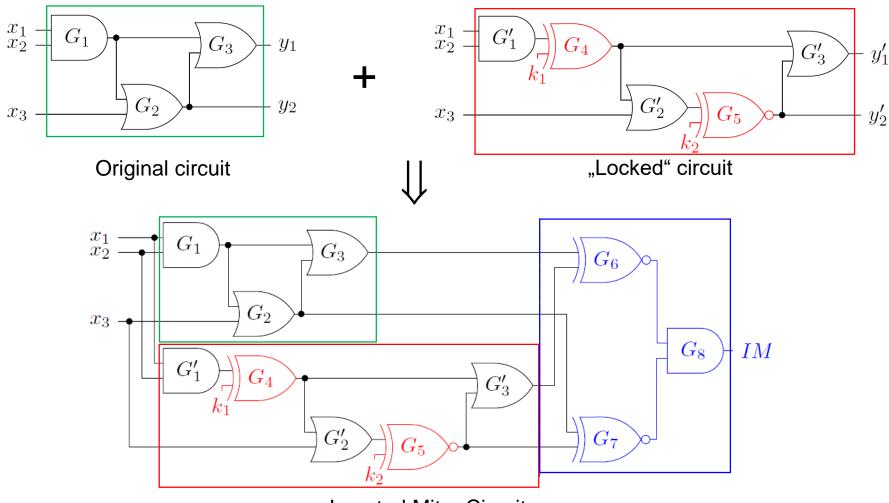
universitätfreiburg

2. Quality Assessment of Logic Locking

- Goal: Attacks against logic locking should be impossible (or too expensive to be realistic)
- Attacker model:
 - Attacker has only access to the locked ICs
 - Attacker can buy an unlocked IC on the market
 - Has to find out the key by "trial-and-error"
- Possible weaknesses of logic locking methods:
 - Not only one key is unlocking, but several keys (many, a large fraction?)
 - There are many key patterns which are not completely correct, but "almost", since they produce correct outputs for "almost all" input patterns

⇒ Quality measures for logic locking and precise quality assessment using formal methods!

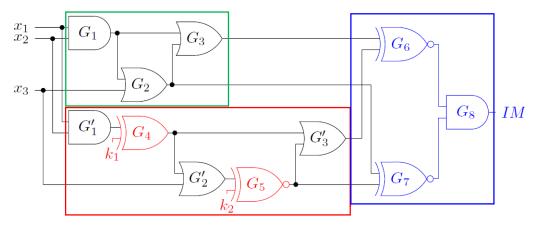
3. Reduction to Existing SAT-related Problems Inverted Miter Circuit



Inverted Miter Circuit

3. Reduction to Existing SAT-related Problems Quality Measures

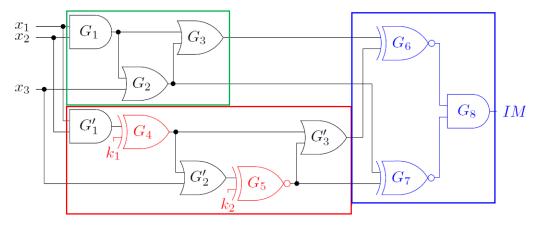
- A key is called unlocking, if it computes the correct outputs for all possible inputs.
- Check whether there exists an unlocking key: $\exists \vec{K} \forall \vec{X} : f_{IM}(\vec{X}, \vec{K})$
- Check whether there exists a key different from the original (intended) unlocking key \vec{K}_{orig} that unlocks the circuit: $\exists \vec{K} \forall \vec{X} : [f_{IM} \land (\vec{K} \neq \vec{K}_{orig})]$
- Compute the fraction of unlocking keys: $\exists^{0.5} \vec{K} \forall \vec{X}: f_{IM}$ (can be reformulated as projected model counting)



3. Reduction to Existing SAT-related Problems Quality Measure: Existence of Keys with High Criticality

- What if a key is "almost unlocking"?
- **Def**.: The **criticality of a key** is defined as the quotient of the number of input assignments for which the key produces a correct output and the total number of input assignments.
- \Rightarrow We do not want to have keys different from \vec{K}_{orig} that have a criticality higher than *c* (close to 1).
- Check whether such a key exists:

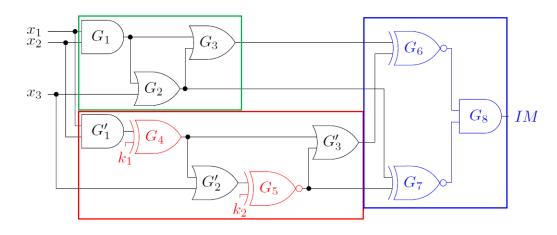
 $\left(\exists \vec{K} \exists^{0.5} \vec{X} : \left[f_{IM} \land \left(\vec{K} \neq \vec{K}_{orig} \right) \right] \right) > c$



 \Rightarrow Stochastic SAT (**SSAT**)

3. Reduction to Existing SAT-related Problems Quality Measure: Average Criticality of Keys

- A few keys with high criticality are not too bad ...
- ⇒ Compute the average criticality of all keys: $\exists^{0.5}\vec{K}\exists^{0.5}\vec{X}:f_{IM}$
- \Rightarrow Model Counting
- But is this what we actually want to compute?
- Two examples with average criticality \approx 0.5:
 - Case 1: The original key has criticality 1, all others criticality 0.5 ⇒ no security problem
 - Case 2: One half of the keys has criticality 1, the other half has criticality 0 ⇒ severe security problem



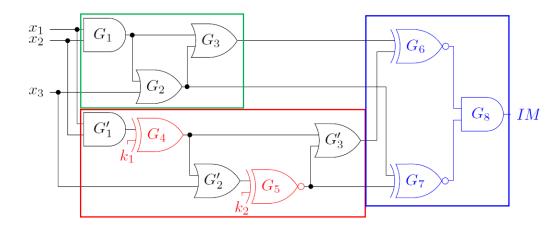
universität freiburg

3. Reduction to Existing SAT-related Problems Quality Measure: Fraction of Keys with High Criticality

• What we actually want to have is:

To keep the fraction of keys with high criticality low!

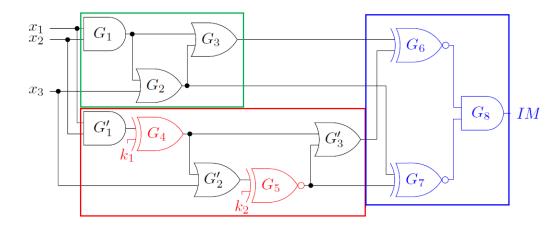
- How to compute this?
- In principle (but not efficient at all!):
 - Compute for each fixed key \vec{K}_{fix} its criticality: $\exists^{0.5} \vec{X}: f_{IM}|_{\vec{K}_{fix}}$
 - Compare the criticality with the "acceptable criticality bound" *c*: I.e. check whether $\exists^{0.5} \vec{X}: f_{IM}|_{\vec{K}_{fix}} > c$
 - Compute the fraction of keys for which the comparison holds ⇒ "fraction of keys with high criticality"
 - Compare this fraction with "allowed value" *d*.



3. Reduction to Existing SAT-related Problems Quality Measure: Fraction of Keys with High Criticality

- Compute for each fixed key \vec{K}_{fix} its criticality: $\exists^{0.5} \vec{X}: f_{IM}|_{\vec{K}_{fix}}$
- Compare the criticality with the "acceptable criticality bound" *c*: I.e. check whether $\exists^{0.5} \vec{X} : f_{IM} |_{\vec{K}_{fix}} > c$
- Compute the fraction of keys for which the comparison holds
 ⇒ "fraction of keys with high criticality"
- Compare this value with "allowed value" *d*.
- \Rightarrow You have to solve a formula like

 $((\exists^{0.5} \vec{K}((\exists^{0.5} \vec{X}: f_{IM}) > c)) > d).$



⇒ New formula class Hierarchical Stochatic SAT (HSSAT)

universität freiburg

4. Hierarchical Stochastic SAT Syntax Definition

(Detailed formal definition in the paper)

- Any Boolean formula is an HSSAT formula.
- If Φ is an HSSAT formula, then
 - $(\exists x \Phi)$ is an HSSAT formula,
 - $(\forall x \Phi)$ is an HSSAT formula,
 - $(\exists^p x \Phi)$ with $p \in [0, 1]$ is an HSSAT formula,
 - $(\Phi op q)$ with $op \in \{<, \le, >, \ge, =, \neq\}, q \in [0, 1]$ is an HSSAT formula.

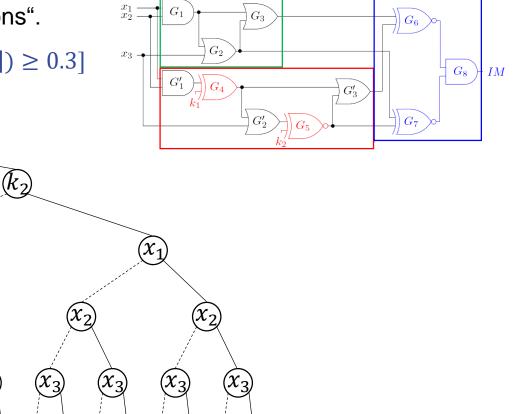
"nested comparison"

4. Hierarchical Stochastic SAT Semantics Definition, explained by Example

 (k_2)

 (x_3)

- Semantics definition similar to SSAT, but with "nested comparisons".
- **Example** (cont.): $[(\exists^{0.5}k_1 \exists^{0.5}k_2[(\exists^{0.5}x_1 \exists^{0.5}x_2 \exists^{0.5}x_3; f_{IM}) \ge 0.99]) \ge 0.3]$



 χ_2

 (x_3)

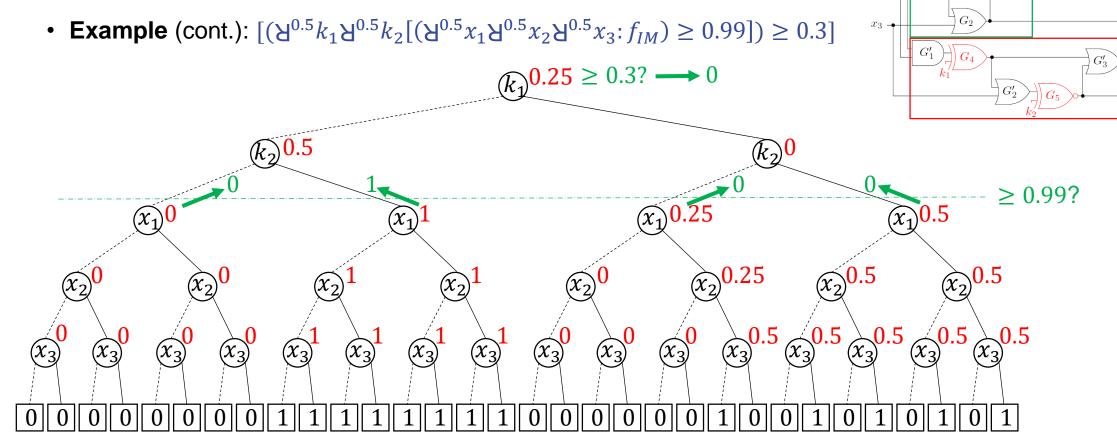
 (k_1)

universitätfreiburg

 (x_3)

4. Hierarchical Stochastic SAT Semantics Definition, explained by Example

• Semantics definition similar to SSAT, but with "nested comparisons".



universität freiburg

C. Scholl, T. Seufert, F. Siegwolf: Hierarchical Stochastic SAT and Quality Assessment of Logic Locking |

 G_8

 G_7

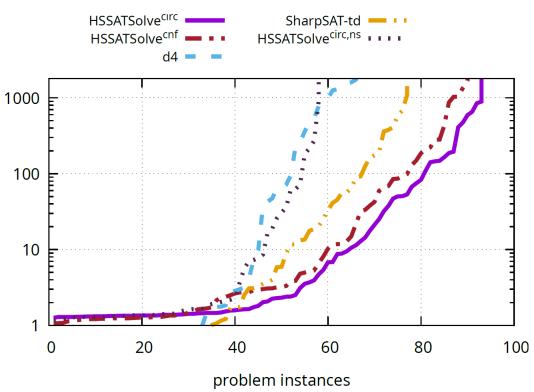
IM

 G_3

7. Experimental Results Part I: Sanity Check for Prototype Solver Using Known HSSAT Subclasses

Model Counting

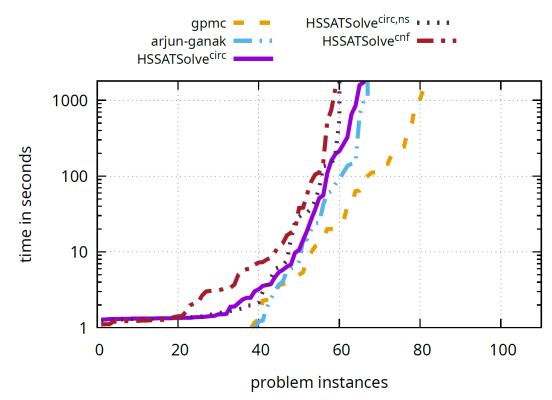
• Average Criticality of Keys: $\exists^{0.5}\vec{K}\exists^{0.5}\vec{X}:f_{IM}$



7. Experimental Results Part I: Sanity Check for Prototype Solver Using Known HSSAT Subclasses

Projected Model Counting

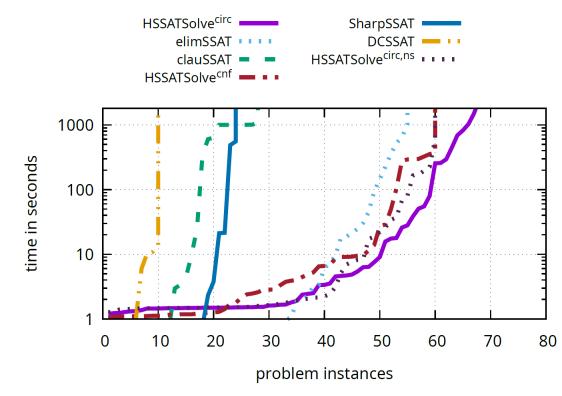
• Fraction of not unlocking keys: $\exists \vec{X} : \neg f_{IM}$



7. Experimental Results Part I: Sanity Check for Prototype Solver Using Known HSSAT Subclasses

Stochastic SAT (SSAT)

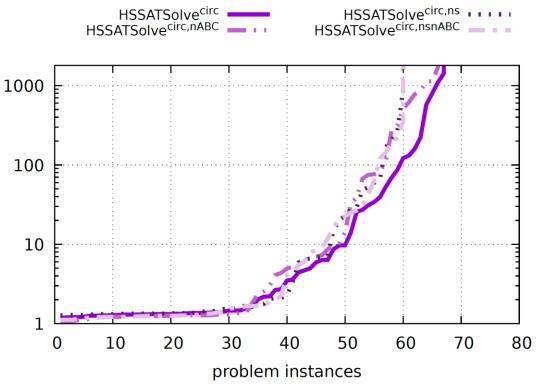
• Existence of Keys with High Criticality: $(\exists \vec{K} \exists^{0.5} \vec{X}: [f_{IM} \land (\vec{K} \neq \vec{K}_{orig})]) > c$



7. Experimental Results Part II: Results for HSSAT Formulas

Hierarchical Stochastic SAT (HSSAT)

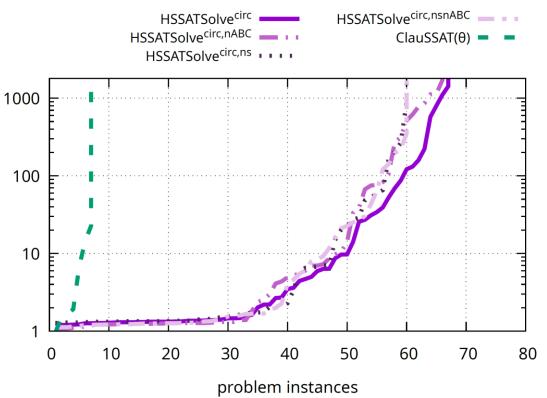
• Fraction of Keys with High Criticality: $((\exists^{0.5} \vec{X} : f_{IM}) > c)) > d).$



7. Experimental Results Part II: Results for HSSAT Formulas

Hierarchical Stochastic SAT (HSSAT)

• Fraction of Keys with High Criticality: $((\exists^{0.5} \vec{X} : f_{IM}) > c)) > d).$



8. Conclusions and Future Work

- New problem class HSSAT, motivated by quality assessment of logic locking
- HSSAT is PSPACE complete (as QBF and SSAT)
- First ROBDD-based prototype solver HSSATSolve
- First interesting results in the application domain
- Provides benchmarks also for subclasses of HSSAT
- Improve solver
- Compare different logic locking methods with precise evaluation of quality measures

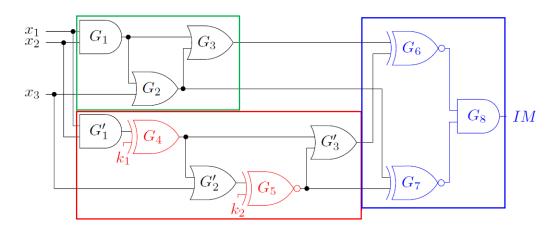
universitätfreiburg

3. Reduction to Existing SAT-related Problems Quality Measure 1: Key Uniqueness

• Check whether there exists a key different from the original (intended) unlocking key \vec{K}_{orig} that unlocks the circuit:

 $\exists \vec{K} \forall \vec{X} \colon [f_{IM} \land \left(\vec{K} \neq \vec{K}_{orig} \right)]$

 \Rightarrow Quantified Boolean Formula (QBF)

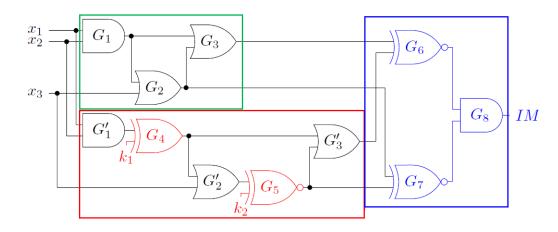


3. Reduction to Existing SAT-related Problems Quality Measure 2: Fraction of Unlocking Keys

- We do not want to have a large number of unlocking keys ...
- \Rightarrow Compute the **fraction** of unlocking keys:

 $\exists^{0.5}\vec{K}\forall\vec{X}:f_{IM}$

- Here the random quantifier ^μ is defined as in Stochastic SAT (SSAT) formulas Φ which compute satisfying probabilities Pr[Φ]:
 - $\Pr[\Phi] = 0$, if $\Phi \equiv 0$,
 - $\Pr[\Phi] = 1$, if $\Phi \equiv 1$,
 - $\Pr[\mathsf{A}^p x \Phi] = (1-p) \cdot \Pr[\Phi|_{\neg x}] + p \cdot \Pr[\Phi|_x],$
 - $\Pr[\exists x \Phi] = \max(\Pr[\Phi|_{\neg x}], \Pr[\Phi|_x]),$
 - $\Pr[\forall x \Phi] = \min(\Pr[\Phi|_{\neg x}], \Pr[\Phi|_{x}]).$

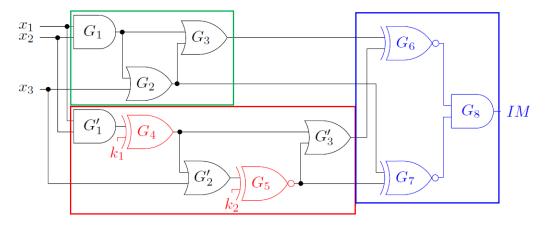


3. Reduction to Existing SAT-related Problems Quality Measure 2: Fraction of Unlocking Keys

• We do not want to have a large number of unlocking keys ...

⇒ Compute the **fraction** of unlocking keys: $\exists^{0.5}\vec{K}\forall\vec{X}:f_{IM}$

- \Rightarrow Stochastic SAT (**SSAT**)
- But if we compute the negation (fraction of keys which are **not** unlocking) we only need **Projected Model Counting**: $\exists^{0.5}\vec{K}\exists\vec{X}:\neg f_{IM}$



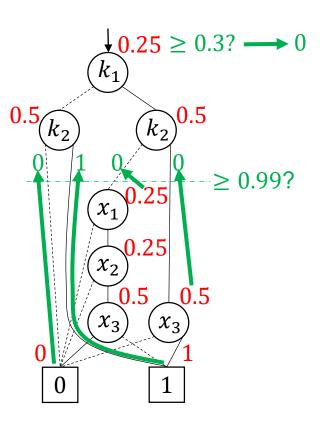
5. Prototype for Solving HSSAT An ROBDD-based Algorithm

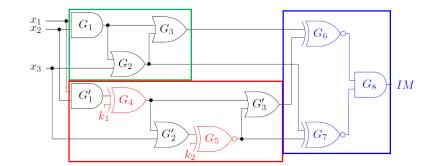
- Semantics definition immediately suggests two solution approaches:
 - DPLL-based algorithm
 - ROBDD-based algorithm
- Here: **ROBDD-based algorithm** as a prototype
 - Build ROBDD for the matrix with variable order according to the prefix of the HSSAT formula
 - Do a bottom-up evaluation of the ROBDD (similar to the decision tree)
 - Node sharing (isomorphism reductions) just increase the efficiency
 - "Long edges" (Shannon reductions) increase the efficiency, but need some special attention, if they "cross levels with nested comparisons"

universität freiburg

5. Prototype for Solving HSSAT An ROBDD-based Algorithm

• **Example** (cont.): $[(\aleph^{0.5}k_1 \aleph^{0.5}k_2[(\aleph^{0.5}x_1 \aleph^{0.5}x_2 \aleph^{0.5}x_3; f_{IM}) \ge 0.99]) \ge 0.3]$





6. Two Improvements

- Some flexibility wrt. ROBDD variable order:
 - Exchanging variables within blocks of identical quantifiers allowed
 - But: Quantifier blocks are cut by nested comparisons!
 - \Rightarrow Dynamic variable ordering by group sifting
- In case of matrix in CNF:
 - Semantic gate detection with UNIQUE¹
 - Be careful!

universitätfreiburg

Needs adjustment for nested comparisons

• **Example** (cont.): $[(\aleph^{0.5}k_1 \aleph^{0.5}k_2 [(\aleph^{0.5}x_1 \aleph^{0.5}x_2 \aleph^{0.5}x_3 : f_{IM}) \ge 0.99]) \ge 0.3]$ k_1 k_2 K_2 $\geq 0.99?$ χ_1

 x_2

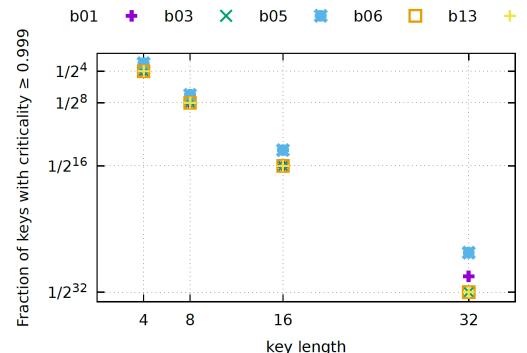
 χ_3

 x_3

7. Experimental Results Part II: Results for HSSAT Formulas

Fraction of Keys with High Criticality – Different Key Lengths

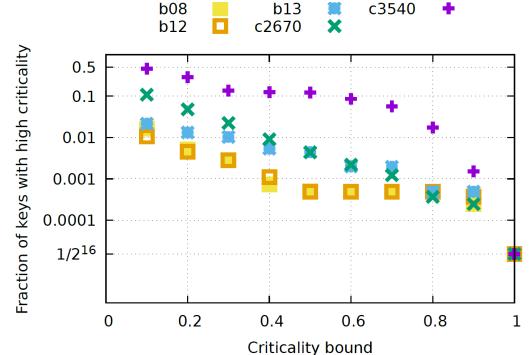
- Fraction of keys with criticality ≥ 0.999
- Results for different circuits and key lengths 4, 8, 16, 32



7. Experimental Results Part II: Results for HSSAT Formulas

Fraction of Keys with High Criticality – Different Criticality Bounds

- Fixed key length of 16
- Results for different circuits, fraction of keys with criticality \geq 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0



universitätfreiburg

1. Introduction to Logic Locking Method

• Scenario:

- Foundry delivers locked ICs to the design house
- Design house stores secret key in non-volatile tamper-proof memory
- Unlocked chips are sold by design house

