
Deciding Boolean Separation Logic
via Small Models
Alpine Verification Meeting 2024

Tomáš Dacík1,∗ Adam Rogalewicz1 Tomáš Vojnar1 Florian Zuleger2

1 Brno University of Technology, Faculty of Information Technology
2 TU Wien, Faculty of Informatics

∗ Supported by Brno Ph.D. Talent scholarship

Separation Logic

• Frequently used for reasoning about heap-manipulating programs
• Separating conjunction φ ∗ ψ – the heap can be split into disjoint parts
satisfying φ and ψ

• Inductive predicates describing data structures (lists, trees, ...)

• A majority of automated decision procedures handles the symbolic
heap fragment that forbids a boolean structure of spatial assertions:

(x = y+ 1 ∧ w 6= nil)︸ ︷︷ ︸
pure part

∗ x 7→ y ∗ sls(y, z) ∗ z 7→ w︸ ︷︷ ︸
spatial part

• Pure part: a boolean structure is sometimes allowed
• Spatial part: no boolean structure allowed

1/15

Separation Logic

• Frequently used for reasoning about heap-manipulating programs
• Separating conjunction φ ∗ ψ – the heap can be split into disjoint parts
satisfying φ and ψ

• Inductive predicates describing data structures (lists, trees, ...)

• A majority of automated decision procedures handles the symbolic
heap fragment that forbids a boolean structure of spatial assertions:

(x = y+ 1 ∧ w 6= nil)︸ ︷︷ ︸
pure part

∗ x 7→ y ∗ sls(y, z) ∗ z 7→ w︸ ︷︷ ︸
spatial part

• Pure part: a boolean structure is sometimes allowed
• Spatial part: no boolean structure allowed

1/15

Decision Procedures for SL

• Many approaches for complex user-defined inductive predicates:
• Tree automata (SLIDE, SPEN), heap automata (HARRSH)
• Cyclic proofs (CYCLIST, S2S), induction (SONGBIRD)

• SMT-translation-based approaches:
• Limited boolean structures + built-in inductive predicates
• GRASSHOPPER – intermediate theory of reachability
• SLOTH – direct translation based on small-model property

• Decision procedure in CVC5
• Fine-grained combination with other SMT theories
• Arbitrary nesting of boolean and spatial connectives
• But no inductive predicates

∗ Decidability proofs for more complex fragments

2/15

Decision Procedures for SL

• Many approaches for complex user-defined inductive predicates:
• Tree automata (SLIDE, SPEN), heap automata (HARRSH)
• Cyclic proofs (CYCLIST, S2S), induction (SONGBIRD)

• SMT-translation-based approaches:
• Limited boolean structures + built-in inductive predicates
• GRASSHOPPER – intermediate theory of reachability
• SLOTH – direct translation based on small-model property

• Decision procedure in CVC5
• Fine-grained combination with other SMT theories
• Arbitrary nesting of boolean and spatial connectives
• But no inductive predicates

∗ Decidability proofs for more complex fragments

2/15

Decision Procedures for SL

• Many approaches for complex user-defined inductive predicates:
• Tree automata (SLIDE, SPEN), heap automata (HARRSH)
• Cyclic proofs (CYCLIST, S2S), induction (SONGBIRD)

• SMT-translation-based approaches:
• Limited boolean structures + built-in inductive predicates
• GRASSHOPPER – intermediate theory of reachability
• SLOTH – direct translation based on small-model property

• Decision procedure in CVC5
• Fine-grained combination with other SMT theories
• Arbitrary nesting of boolean and spatial connectives
• But no inductive predicates

∗ Decidability proofs for more complex fragments

2/15

Decision Procedures for SL

• Many approaches for complex user-defined inductive predicates:
• Tree automata (SLIDE, SPEN), heap automata (HARRSH)
• Cyclic proofs (CYCLIST, S2S), induction (SONGBIRD)

• SMT-translation-based approaches:
• Limited boolean structures + built-in inductive predicates
• GRASSHOPPER – intermediate theory of reachability
• SLOTH – direct translation based on small-model property

• Decision procedure in CVC5
• Fine-grained combination with other SMT theories
• Arbitrary nesting of boolean and spatial connectives
• But no inductive predicates

∗ Decidability proofs for more complex fragments

2/15

Boolean Separation Logic (BSL)

Syntax:

φatom ::= x = y | x 6= y | x 7→ (y1, . . . , yn) | sls(x, y) | dls(x, y, x′, y′) | nls(x, y, z)
φ ::= φatom | φ ∧ φ | φ ∨ φ | φ ∧ ¬φ | φ ∗ φ

3/15

Boolean Separation Logic (BSL)

Syntax:

φatom ::= x = y | x 6= y | x 7→ (y1, . . . , yn) | sls(x, y) | dls(x, y, x′, y′) | nls(x, y, z)
φ ::= φatom | φ ∧ φ | φ ∨ φ | φ ∧ ¬φ | φ ∗ φ

Singly-linked list:

x y

3/15

Boolean Separation Logic (BSL)

Syntax:

φatom ::= x = y | x 6= y | x 7→ (y1, . . . , yn) | sls(x, y) | dls(x, y, x′, y′) | nls(x, y, z)
φ ::= φatom | φ ∧ φ | φ ∨ φ | φ ∧ ¬φ | φ ∗ φ

Doubly-linked list:

y′ x x′ y

3/15

Boolean Separation Logic (BSL)

Syntax:

φatom ::= x = y | x 6= y | x 7→ (y1, . . . , yn) | sls(x, y) | dls(x, y, x′, y′) | nls(x, y, z)
φ ::= φatom | φ ∧ φ | φ ∨ φ | φ ∧ ¬φ | φ ∗ φ

Nested singly-linked list:

x y

z

3/15

Boolean Separation Logic (BSL)

Syntax:

φatom ::= x = y | x 6= y | x 7→ (y1, . . . , yn) | sls(x, y) | dls(x, y, x′, y′) | nls(x, y, z)
φ ::= φatom | φ ∧ φ | φ ∨ φ | φ ∧ ¬φ | φ ∗ φ

Guarded negation φ ∧ ¬ψ:
• Ensures that models are ”garbage-free”
• Makes logic closed w.r.t. entailment checking
• Can be used for model enumeration

• Note: true cannot be expressed in BSL because we use the so-called
precise semantics in which x = x ∨ x 6= x is equivalent to emp

3/15

Motivation I

• Disjunctions naturally appear in program verification:

{emp} x = malloc() {x 7→ f ∨ (x = nil ∧ emp)}

• Boolean connectives can be introduced by translation from more
complex flavours of SL (e.g., quantitative SL or by unfolding of
inductive definitions)

4/15

Motivation II: Membership in Data Structures

Property 1: List containing elements ℓ1, . . . , ℓn (in arbitrary order):

• Symbolic heaps: not straightforward (needs enumeration of
permutations or existential variables)

• BSL: sls(x, y) ∧
∧

ℓi

(
sls(x, ℓi) ∗ sls(ℓi, y)

)
.

Property 2: List not containing element ℓ:

• Symbolic heaps: needs a dedicated inductive predicate
• BSL: sls(x, y) ∧ ¬

(
sls(x, ℓ) ∗ sls(ℓ, y)

)

Both properties can be nested inside more complex formulae which
would lead to an alternation of boolean and spatial connectives.

5/15

Motivation II: Membership in Data Structures

Property 1: List containing elements ℓ1, . . . , ℓn (in arbitrary order):

• Symbolic heaps: not straightforward (needs enumeration of
permutations or existential variables)

• BSL: sls(x, y) ∧
∧

ℓi

(
sls(x, ℓi) ∗ sls(ℓi, y)

)
.

Property 2: List not containing element ℓ:

• Symbolic heaps: needs a dedicated inductive predicate
• BSL: sls(x, y) ∧ ¬

(
sls(x, ℓ) ∗ sls(ℓ, y)

)

Both properties can be nested inside more complex formulae which
would lead to an alternation of boolean and spatial connectives.

5/15

Small-Model Property

Small-Model Property

Theorem
A satisfiable formula φ has a model of linear size (w.r.t. number of vars.)

Proof idea:

• Take an arbitrary model of φ
• Split it into atomic parts
(cannot be split further to
non-empty models)

• Reduce those parts
• Composition of reduced
parts is a model of φ

• Size of reduced model is
lesser than 2n

6/15

Small-Model Property

Theorem
A satisfiable formula φ has a model of linear size (w.r.t. number of vars.)

Proof idea:
• Take an arbitrary model of φ

• Split it into atomic parts
(cannot be split further to
non-empty models)

• Reduce those parts
• Composition of reduced
parts is a model of φ

• Size of reduced model is
lesser than 2n

x1 x2

y1

x3 x4 x5

y2

z

6/15

Small-Model Property

Theorem
A satisfiable formula φ has a model of linear size (w.r.t. number of vars.)

Proof idea:
• Take an arbitrary model of φ
• Split it into atomic parts
(cannot be split further to
non-empty models)

• Reduce those parts
• Composition of reduced
parts is a model of φ

• Size of reduced model is
lesser than 2n

x1 x2

y1

x3 x4 x5

y2

z

6/15

Small-Model Property

Theorem
A satisfiable formula φ has a model of linear size (w.r.t. number of vars.)

Proof idea:
• Take an arbitrary model of φ
• Split it into atomic parts
(cannot be split further to
non-empty models)

• Reduce those parts

• Composition of reduced
parts is a model of φ

• Size of reduced model is
lesser than 2n

x1 x2

y1

x3 x4 x5

y2

z

6/15

Small-Model Property

Theorem
A satisfiable formula φ has a model of linear size (w.r.t. number of vars.)

Proof idea:
• Take an arbitrary model of φ
• Split it into atomic parts
(cannot be split further to
non-empty models)

• Reduce those parts
• Composition of reduced
parts is a model of φ

• Size of reduced model is
lesser than 2n

x1 x2

y1

x3 x4 x5

y2

z

6/15

Small-Model Property

Theorem
A satisfiable formula φ has a model of linear size (w.r.t. number of vars.)

Proof idea:
• Take an arbitrary model of φ
• Split it into atomic parts
(cannot be split further to
non-empty models)

• Reduce those parts
• Composition of reduced
parts is a model of φ

• Size of reduced model is
lesser than 2n

x1 x2

y1

x3 x4 x5

y2

z

6/15

Reduction of Atomic Sub-heaps

• Singly-linked list sls(x, y) – reduction to size at most 2:

x y

• Doubly-linked list dls(x, y, x′, y′) – reduction to size at most 3:

• Nested singly-linked list nls(x, y, z) – reduction to size at most 2:

7/15

Reduction of Atomic Sub-heaps

• Singly-linked list sls(x, y) – reduction to size at most 2:

x y

• Doubly-linked list dls(x, y, x′, y′) – reduction to size at most 3:

• Nested singly-linked list nls(x, y, z) – reduction to size at most 2:

7/15

Reduction of Atomic Sub-heaps

• Singly-linked list sls(x, y) – reduction to size at most 2:

x y

• Doubly-linked list dls(x, y, x′, y′) – reduction to size at most 3:

• Nested singly-linked list nls(x, y, z) – reduction to size at most 2:

7/15

Reduction of Atomic Sub-heaps

• Singly-linked list sls(x, y) – reduction to size at most 2:

x y

• Doubly-linked list dls(x, y, x′, y′) – reduction to size at most 3:

y′ x x′ y

• Nested singly-linked list nls(x, y, z) – reduction to size at most 2:

7/15

Reduction of Atomic Sub-heaps

• Singly-linked list sls(x, y) – reduction to size at most 2:

x y

• Doubly-linked list dls(x, y, x′, y′) – reduction to size at most 3:

y′ x x′ y

• Nested singly-linked list nls(x, y, z) – reduction to size at most 2:

7/15

Reduction of Atomic Sub-heaps

• Singly-linked list sls(x, y) – reduction to size at most 2:

x y

• Doubly-linked list dls(x, y, x′, y′) – reduction to size at most 3:

y′ x x′ y

• Nested singly-linked list nls(x, y, z) – reduction to size at most 2:

7/15

Reduction of Atomic Sub-heaps

• Singly-linked list sls(x, y) – reduction to size at most 2:

x y

• Doubly-linked list dls(x, y, x′, y′) – reduction to size at most 3:

y′ x x′ y

• Nested singly-linked list nls(x, y, z) – reduction to size at most 2:

x y

z 7/15

Reduction of Atomic Sub-heaps

• Singly-linked list sls(x, y) – reduction to size at most 2:

x y

• Doubly-linked list dls(x, y, x′, y′) – reduction to size at most 3:

y′ x x′ y

• Nested singly-linked list nls(x, y, z) – reduction to size at most 2:

x y

z 7/15

Reduction of Atomic Sub-heaps

• Singly-linked list sls(x, y) – reduction to size at most 2:

x y

• Doubly-linked list dls(x, y, x′, y′) – reduction to size at most 3:

y′ x x′ y

• Nested singly-linked list nls(x, y, z) – reduction to size at most 2:

x y

z 7/15

Translation-Based Decision
Procedure

Translation-Based Decision Procedure

• Method inspired by existing approaches (GRASSHOPPER and SLOTH)

• Key improvements:
• More expressive fragment (boolean connectives under ∗)
⇝ Needs generalisation of unique footprint property used for efficient

translation of separating conjunctions

• Bounds on sizes of predicate instances and predicate encoding which
can leverage them

• We already have location bound,
• but we want to compute smaller bounds on individual predicate instances
• Improved scalability: often independent of location bound

8/15

Predicate Bounds

Goal
Bound sizes of predicate instances to decrease size of their encoding.

• Based on SL-graphs which capture must-relations in all models of φ

Example formula

• Improved location bound: 6
• First phase: bounds on paths
which appear in SL-graph

Fragment of SL-graph of φ
(some ∗-edges are missing)

9/15

Predicate Bounds

Goal
Bound sizes of predicate instances to decrease size of their encoding.

• Based on SL-graphs which capture must-relations in all models of φ

Example formula
φ ≜ sls(a,b) ∗ b 7→ c ∗ c 7→ d ∗ sls(d,a) ∧ ¬

(
sls(a, c) ∗ sls(c,a)

)

• Improved location bound: 6
• First phase: bounds on paths
which appear in SL-graph

a b c d6=

∗

Fragment of SL-graph of φ
(some ∗-edges are missing)

9/15

Predicate Bounds

Goal
Bound sizes of predicate instances to decrease size of their encoding.

• Based on SL-graphs which capture must-relations in all models of φ

Example formula
φ ≜ sls(a,b) ∗ b 7→ c ∗ c 7→ d ∗ sls(d,a) ∧ ¬

(
sls(a, c) ∗ sls(c,a)

)

• Improved location bound: 6
• First phase: bounds on paths
which appear in SL-graph

a b c d6=

∗

Fragment of SL-graph of φ
(some ∗-edges are missing)

9/15

Predicate Bounds

Goal
Bound sizes of predicate instances to decrease size of their encoding.

• Based on SL-graphs which capture must-relations in all models of φ

Example formula
φ ≜ sls(a,b) ∗ b 7→ c ∗ c 7→ d ∗ sls(d,a) ∧ ¬

(
sls(a, c) ∗ sls(c,a)

)

• Improved location bound: 6
• First phase: bounds on paths
which appear in SL-graph

a b c d

∗

6=

Fragment of SL-graph of φ
(some ∗-edges are missing)

9/15

Predicate Bounds

Goal
Bound sizes of predicate instances to decrease size of their encoding.

• Based on SL-graphs which capture must-relations in all models of φ

Example formula
φ ≜ sls(a,b) ∗ b 7→ c ∗ c 7→ d ∗ sls(d,a) ∧ ¬

(
sls(a, c) ∗ sls(c,a)

)

• Improved location bound: 6

• First phase: bounds on paths
which appear in SL-graph

a b c d6=

∗

Fragment of SL-graph of φ
(some ∗-edges are missing)

9/15

Predicate Bounds

Goal
Bound sizes of predicate instances to decrease size of their encoding.

• Based on SL-graphs which capture must-relations in all models of φ

Example formula
φ ≜ sls(a,b) ∗ b 7→ c ∗ c 7→ d ∗ sls(d,a) ∧ ¬

(
sls(a, c) ∗ sls(c,a)

)

• Improved location bound: 6
• First phase: bounds on paths
which appear in SL-graph

a b c d
[0, 2] [1, 1] [1, 1]

[0, 2]

6=

∗

Fragment of SL-graph of φ
(some ∗-edges are missing)

9/15

Predicate Bounds: Example

Example formula

φ ≜ sls(a,b) ∗ b 7→ c ∗ c 7→ d ∗ sls(d,a) ∧ ¬
(
sls(a, c) ∗ sls(c,a)

)
Computation for sls(a, c) is based on two projections of SL-graph:

a b c d
[0, 2] [1, 1] [1, 1]

[0, 2]

6=

∗

10/15

Predicate Bounds: Example

Example formula

φ ≜ sls(a,b) ∗ b 7→ c ∗ c 7→ d ∗ sls(d,a) ∧ ¬
(
sls(a, c) ∗ sls(c,a)

)
Computation for sls(a, c) is based on two projections of SL-graph:

Upper bound:
• All directed edges
• Bound is given as length of the
shortest path from a to c

a b c d
2 1 1

2
a b c d
[0, 2] [1, 1] [1, 1]

[0, 2]

6=

∗

10/15

Predicate Bounds: Example

Example formula

φ ≜ sls(a,b) ∗ b 7→ c ∗ c 7→ d ∗ sls(d,a) ∧ ¬
(
sls(a, c) ∗ sls(c,a)

)
Computation for sls(a, c) is based on two projections of SL-graph:

Lower bound:
• Edges which surely do not contain
end of path (c)

• Bound is given as length of the
longest path starting from a not
containing c

a b c0 1

a b c d
[0, 2] [1, 1] [1, 1]

[0, 2]

6=

∗

10/15

Predicate Bounds: Example

Example formula

φ ≜ sls(a,b) ∗ b 7→ c ∗ c 7→ d ∗ sls(d,a) ∧ ¬
(
sls(a, c) ∗ sls(c,a)

)
Computation for sls(a, c) is based on two projections of SL-graph:

Result:
• Bound [1, 3] instead of default [0, 6]
• Bound is stable when LHS and RHS
grows

• Method is easily generalised for
DLLs and NLLs

a b c d
[0, 2] [1, 1] [1, 1]

[0, 2]

6=

∗

10/15

Experimental Evaluation

Implementation

• New solver ASTRAL1

• Support for:
• Subset of the standard format based on SMT-LIB
• Multiple strategies of encoding (e.g., direct x bitvector set encoding)
• Multiple SMT backends – Z3, CVC5, BITWUZLA
• Model generation

1https://github.com/TDacik/Astral

11/15

https://github.com/TDacik/Astral

Comparison on SL-COMP Benchmarks: SLLs

Symbolic heaps from the SL-COMP competition:

• Significantly simpler than full BSL, main goal is to compare with
other translation-based decision procedures (GRASSHOPPER, SLOTH)

OK – Correctly solved, RO – Out of time/memory, WIN – ASTRAL is faster

12/15

Comparison on SL-COMP Benchmarks: SLLs

Symbolic heaps from the SL-COMP competition:

• Significantly simpler than full BSL, main goal is to compare with
other translation-based decision procedures (GRASSHOPPER, SLOTH)

Verification conditions (86)
Solver OK RO WIN <0.1 s ≤1 s Total time [s]

ASTRAL 86 0 - 84 86 4.62
GRASSHOPPER 86 0 70 52 86 8.65
S2S 86 0 5 86 86 2.08
SLOTH 64 3 86 0 28 235.28

OK – Correctly solved, RO – Out of time/memory, WIN – ASTRAL is faster

12/15

Comparison on SL-COMP Benchmarks: SLLs

Symbolic heaps from the SL-COMP competition:

• Significantly simpler than full BSL, main goal is to compare with
other translation-based decision procedures (GRASSHOPPER, SLOTH)

bolognesa+clones (210)
Solver OK RO WIN <0.1 s ≤1 s Total time [s]

ASTRAL 210 0 - 68 169 202.91
GRASSHOPPER 203 7 148 60 87 1229.35
S2S 210 0 3 203 210 8.18
SLOTH 70 140 210 0 50 149.42

OK – Correctly solved, RO – Out of time/memory, WIN – ASTRAL is faster

12/15

Comparison on SL-COMP Benchmarks: NLLs

• NLL formulae selected from SL-COMP category of linear IDs
• S2S, SONGBIRD and HARRSH (three best solvers in the category)

Nested singly-linked lists (19)
Solver OK RO WIN <0.1 s ≤1 s Total time [s]

ASTRAL 19 0 - 3 9 86.93
HARRSH 14 5 18 0 0 183.01
S2S 19 0 0 19 19 0.43
SONGBIRD 11 5 8 4 11 1.38

OK – Correctly solved, RO – Out of time/memory, WIN – ASTRAL is faster

13/15

Comparison with CVC5

• Randomly generated
formulae of depth 8 with 8
variables

• BSL formulae without
inductive predicates

• Astral run with cvc5
backend to provide better
comparison of translation
method

14/15

Summary

• New translation-based decision procedure for a rich fragment of SL
• Outperforms existing translation-based decision procedures and
extends fragment which can be translated

Future work:

• User-defined inductive predicates
• Fine-grained combination with SMT (arbitrary location sorts)
• Interactive/lazy translation

15/15

Appendices

Comparison with GRASSHOPPER

• Entailments of positive
boolean combinations of
lists

• Formulae of depth 6 with 6
variables

Intuition behind Reduction

• Such reduction is possible because considered fragment cannot
speak about arbitrary sizes of predicates

• For example, for DLLs, we may express the following:

• DLLs of larger sizes cannot be expressed using BSL formulae without
using additional variables

Intuition behind Reduction

• Such reduction is possible because considered fragment cannot
speak about arbitrary sizes of predicates

• For example, for DLLs, we may express the following:

x , y x′, y′ |= dls(x, y, x′, y′)

• DLLs of larger sizes cannot be expressed using BSL formulae without
using additional variables

Intuition behind Reduction

• Such reduction is possible because considered fragment cannot
speak about arbitrary sizes of predicates

• For example, for DLLs, we may express the following:

y′ x, x′ y |=
dls(x, y, x′, y′) ∗ x 6= y︸ ︷︷ ︸
DLL of size greater than 0

• DLLs of larger sizes cannot be expressed using BSL formulae without
using additional variables

Intuition behind Reduction

• Such reduction is possible because considered fragment cannot
speak about arbitrary sizes of predicates

• For example, for DLLs, we may express the following:

y′ x x′ y |=
dls(x, y, x′, y′) ∗ x 6= y ∗ x 6= x′︸ ︷︷ ︸

DLL of size greater than 1

• DLLs of larger sizes cannot be expressed using BSL formulae without
using additional variables

Intuition behind Reduction

• Such reduction is possible because considered fragment cannot
speak about arbitrary sizes of predicates

• For example, for DLLs, we may express the following:

y′ x x′ y

|=

dls(x, y, x′, y′) ∗ x 6= y ∗ x 6= x′ ∧ ¬
(
x 7→ (x′, y′) ∗ x′ 7→ (y, x)

)
︸ ︷︷ ︸

DLL of size greater than 2

• DLLs of larger sizes cannot be expressed using BSL formulae without
using additional variables

Intuition behind Reduction

• Such reduction is possible because considered fragment cannot
speak about arbitrary sizes of predicates

• For example, for DLLs, we may express the following:

y′ x x′ y

|=

dls(x, y, x′, y′) ∗ x 6= y ∗ x 6= x′ ∧ ¬
(
x 7→ (x′, y′) ∗ x′ 7→ (y, x)

)
︸ ︷︷ ︸

DLL of size greater than 2

• DLLs of larger sizes cannot be expressed using BSL formulae without
using additional variables

Unique Footprints

• Semantics of ∗ implicitly involves existential quantification:

There exists a split of heap such that ...

• Unique footprints: quantification can be avoided when there is the
unique relevant split:

φ ∧ ¬
(

x 7→ y︸ ︷︷ ︸
Can be satisfied
only on {x}

∗ sls(x, y)︸ ︷︷ ︸
Can be satisfied only
on path from x to y
(which is unique)

)

Unique Footprints

• Semantics of ∗ implicitly involves existential quantification:

There exists a split of heap such that ...

• Unique footprints: quantification can be avoided when there is the
unique relevant split:

φ ∧ ¬
(

x 7→ y︸ ︷︷ ︸
Can be satisfied
only on {x}

∗ sls(x, y)︸ ︷︷ ︸
Can be satisfied only
on path from x to y
(which is unique)

)

Footprints: Generalisation

• Footprints are not unique in BSL because of disjunctions:

φ ∗
(
emp ∨ x 7→ y

)
︸ ︷︷ ︸
Can be satisfied
on ∅ or {x}

• However, we can still use the principle of footprints:
• For each operand of ∗, we compute sets of terms representing
over-approximation of its footprints

• Replace the “exists split” quantification underlying ∗
• by its instantiation to footprint terms
• provided they are small enough.

Bitvector Encoding

Direct Encoding:

• Datatypes (locations)
• Sets (heap domains)
• Arrays (heap mappings)

Bitvector Encoding

Direct Encoding:

• Datatypes (locations)
• Sets (heap domains) – non-standard theory
• Arrays (heap mappings)

Bitvector Encoding

Direct Encoding:

• Datatypes (locations) – standardised, not so commonly supported
• Sets (heap domains) – non-standard theory
• Arrays (heap mappings)

Bitvector Encoding

Direct Encoding:

• Datatypes (locations) – standardised, not so commonly supported
• Sets (heap domains) – non-standard theory
• Arrays (heap mappings)

Bitvector encoding

• Both locations and location sets are encoded as bitvectors
• Additional axioms: locations must fit into bitvector sets
• Better performance with quantifiers over (encoded) sets

Complexity

Theorem
Satisfiability problem for BSL is PSPACE-complete.

Proof idea:

• Problem is known to be PSPACE-complete for unbounded negations
by reduction from QBF

• BSL can express the true atom in QBF encoding

true[X] ≜ ∗
x∈X

x 7→ nil ∨ emp

When either guarded negation or disjunction is dropped, the problem is
NP-complete

	Small-Model Property
	Translation-Based Decision Procedure
	Experimental Evaluation
	Appendices
	Appendix

