Deciding Boolean Separation Logic
via Small Models

Alpine Verification Meeting 2024

Tomas Dacik"* Adam Rogalewicz' Tomas Vojnar' Florian Zuleger?

" Brno University of Technology, Faculty of Information Technology

2 TU Wien, Faculty of Informatics
VERIFIT

* Supported by Brno Ph.D. Talent scholarship

Separation Logic

- Frequently used for reasoning about heap-manipulating programs

- Separating conjunction ¢ =+ — the heap can be split into disjoint parts
satisfying ¢ and 1
- Inductive predicates describing data structures (lists, trees, ...)

1/15

Separation Logic

- Frequently used for reasoning about heap-manipulating programs

- Separating conjunction ¢ =+ — the heap can be split into disjoint parts
satisfying ¢ and 1
- Inductive predicates describing data structures (lists, trees, ...)

- A majority of automated decision procedures handles the symbolic
heap fragment that forbids a boolean structure of spatial assertions:

(X=y+T1AW#nil) *x x> yxsls(y,2)*z— w

pure part spatial part

- Pure part: a boolean structure is sometimes allowed
- Spatial part: no boolean structure allowed

1/15

Decision Procedures for SL

- Many approaches for complex user-defined inductive predicates:

- Tree automata (SLIDE, SPEN), heap automata (HARRSH)
- Cyclic proofs (CvcLisT, S2S), induction (SONGBIRD)

2/15

Decision Procedures for SL

- Many approaches for complex user-defined inductive predicates:

- Tree automata (SLIDE, SPEN), heap automata (HARRSH)
- Cyclic proofs (CvcLisT, S2S), induction (SONGBIRD)

- SMT-translation-based approaches:

- Limited boolean structures + built-in inductive predicates
- GRASSHOPPER - intermediate theory of reachability
-+ SLOTH - direct translation based on small-model property

2/15

Decision Procedures for SL

- Many approaches for complex user-defined inductive predicates:

- Tree automata (SLIDE, SPEN), heap automata (HARRSH)
- Cyclic proofs (CvcLisT, S2S), induction (SONGBIRD)

- SMT-translation-based approaches:

- Limited boolean structures + built-in inductive predicates
- GRASSHOPPER - intermediate theory of reachability
-+ SLOTH - direct translation based on small-model property

- Decision procedure in cvch

- Fine-grained combination with other SMT theories
- Arbitrary nesting of boolean and spatial connectives
- But no inductive predicates

2/15

Decision Procedures for SL

- Many approaches for complex user-defined inductive predicates:

- Tree automata (SLIDE, SPEN), heap automata (HARRSH)
- Cyclic proofs (CvcLisT, S2S), induction (SONGBIRD)

- SMT-translation-based approaches:

- Limited boolean structures + built-in inductive predicates
- GRASSHOPPER - intermediate theory of reachability
-+ SLOTH - direct translation based on small-model property

- Decision procedure in cvch

- Fine-grained combination with other SMT theories
- Arbitrary nesting of boolean and spatial connectives
- But no inductive predicates

x Decidability proofs for more complex fragments

2/15

Boolean Separation Logic (BSL)

Syntax:

Qatom == X =Y | XFY|X= (y1,...,¥n) | sls(x,y) | dls(x,y,X',y") | nls(x,y, 2)
0= atom | e A@ |V loA-p|pxep

3/15

Boolean Separation Logic (BSL)

Syntax:

atom = X=Y | XZ Y[X V1,5 ¥n) | sls(x,y) | dls(x,y, X', V') | nls(x,y, 2)
@ = watom | AP | oV oA |p*p

Singly-linked list:

3/15

Boolean Separation Logic (BSL)

Syntax:

atom = X=Y | XZ Y[X V1,5 ¥n) | SIS(x,y) | dls(xy, X, V) | nls(x,y, 2)
¢ = Qaom | pA@ @V |oAp|pxep

Doubly-linked list:
=002

3/15

Boolean Separation Logic (BSL)

Syntax:

atom = X=Y | XZ Y| X V1,5 ¥n) | SIs(x,y) | dls(x, v, X', V') | nls(x, v, 2)
¢ = Qaom | pA@ @V |oAp|pxep

Nested singly-linked list:

3/15

Boolean Separation Logic (BSL)

Syntax:
atom = X=Y | XZ Y[X V1,5 ¥n) | sls(x,y) | dls(x, v, X', V') | nls(x,y, 2)
= atom | e A@ |V |oA-p|pxe

Guarded negation ¢ A —:
- Ensures that models are "garbage-free”
- Makes logic closed w.rt. entailment checking

- Can be used for model enumeration

- Note: true cannot be expressed in BSL because we use the so-called
precise semantics in which x = x V x # x is equivalent to emp

3/15

Motivation |

- Disjunctions naturally appear in program verification:

{emp} x = malloc() {x+ fV (x =nilAemp)}

- Boolean connectives can be introduced by translation from more
complex flavours of SL (e.g., quantitative SL or by unfolding of
inductive definitions)

4/15

Motivation Il: Membership in Data Structures

Property 1: List containing elements ¢4, ..., ¢, (in arbitrary order):

- Symbolic heaps: not straightforward (needs enumeration of
permutations or existential variables)

* BSL:sls(x,y) A A, (sls(x,é,-)*sls(e,-,y)).

5/15

Motivation Il: Membership in Data Structures

Property 1: List containing elements ¢4, ..., ¢, (in arbitrary order):

- Symbolic heaps: not straightforward (needs enumeration of
permutations or existential variables)

* BSL:sls(x,y) A A, (sls(x,é,-)*sls(e,-,y)).

Property 2: List not containing element ¢

- Symbolic heaps: needs a dedicated inductive predicate
- BSL:sls(x,y) A ﬂ(sls(x, £) *sls(¢, y))

Both properties can be nested inside more complex formulae which
would lead to an alternation of boolean and spatial connectives.

5/15

Small-Model Property

Small-Model Property

Theorem
A satisfiable formula ¢ has a model of (w.rt. number of vars.)

6/15

Small-Model Property

Theorem
A satisfiable formula ¢ has a model of linear size (w.rt. number of vars.)

Proof idea:

- Take an arbitrary model of ¢ .
©09 90
L)

6/15

Small-Model Property

Theorem
A satisfiable formula ¢ has a model of (w.rt. number of vars.)
Proof idea:
—)
- Take an of ¢ ->
- Splititinto
(cannot be split further to .
non-empty models) .

6/15

Small-Model Property

Theorem

A satisfiable formula ¢ has a model of linear size (w.rt. number of vars.)

Proof idea:

- Take an arbitrary model of ¢
- Split it into atomic parts
(cannot be split further to
non-empty models)

o)

-0

- Reduce those parts

6/15

Small-Model Property

Theorem

A satisfiable formula ¢ has a model of linear size (w.rt. number of vars.)

Proof idea:
- Take an arbitrary model of ¢
- Split it into atomic parts
(cannot be split further to
non-empty models)
- Reduce those parts

- Composition of reduced
parts is a model of ¢

6/15

Small-Model Property

Theorem

A satisfiable formula ¢ has a model of linear size (w.rt. number of vars.)

Proof idea:
- Take an arbitrary model of ¢
- Split it into atomic parts
(cannot be split further to
non-empty models)

- Reduce those parts

- Composition of reduced
parts is a model of ¢

- Size of reduced model is
lesser than 2n

6/15

Reduction of Atomic Sub-heaps

- Singly-linked list sls(x,y) - reduction to size at most 2:

7/15

Reduction of Atomic Sub-heaps

- Singly-linked list sls(x,y) - reduction to size at most 2:

7/15

Reduction of Atomic Sub-heaps

- Singly-linked list sls(x,y) - reduction to size at most 2:

®-00-0°0

7/15

Reduction of Atomic Sub-heaps

- Singly-linked list sls(x,y) - reduction to size at most 2:

@000

- Doubly-linked list dls(x, y, x’,y’) - reduction to size at most 3:

8=0=0=0

7/15

Reduction of Atomic Sub-heaps

- Singly-linked list sls(x,y) - reduction to size at most 2:

@000

- Doubly-linked list dls(x, y, x’,y’) - reduction to size at most 3:

BE=CC00-0

7/15

Reduction of Atomic Sub-heaps

- Singly-linked list sls(x,y) - reduction to size at most 2:

@000

- Doubly-linked list dls(x, y, x’,y’) - reduction to size at most 3:

7 N\
D~ 0%0%0% 0
__

7/15

Reduction of Atomic Sub-heaps

- Singly-linked list sls(x,y) - reduction to size at most 2:

@000

- Doubly-linked list dls(x, y, x’,y’) - reduction to size at most 3:
7 N\
VE=OC020~0
_/

- Nested singly-linked list nls(x,y,z) - reduction to size at most 2:

7/15

Reduction of Atomic Sub-heaps

- Singly-linked list sls(x,y) - reduction to size at most 2:

@000

- Doubly-linked list dls(x, y, x’,y’) - reduction to size at most 3:
7 N\
VE=OC020~0
_/

- Nested singly-linked list nls(x,y,z) - reduction to size at most 2:

7/15

Reduction of Atomic Sub-heaps

- Singly-linked list sls(x,y) - reduction to size at most 2:

@000

- Doubly-linked list dls(x, y, x’,y’) - reduction to size at most 3:
7 N\
VE=OC020~0
_/

- Nested singly-linked list nls(x,y,z) - reduction to size at most 2:

0-0°0

é, 7/15

Translation-Based Decision
Procedure

Translation-Based Decision Procedure

- Method inspired by existing approaches (GRASSHOPPER and SLOTH)

- Key improvements:

- More expressive fragment (boolean connectives under x)

~» Needs generalisation of unique footprint property used for efficient
translation of separating conjunctions

- Bounds on sizes of predicate instances and predicate encoding which
can leverage them
- We already have location bound,
- but we want to compute smaller bounds on individual predicate instances
- Improved scalability: often independent of location bound

8/15

Predicate Bounds

Goal
Bound sizes of predicate instances to of their encoding.
- Based on which capture in all models of ¢

9/15

Predicate Bounds

Goal
Bound sizes of predicate instances to of their encoding.
- Based on which capture in all models of ¢

Example formula

¢ £sls(a,b) x b cx c— dxsls(d,a) A (sls(a, ¢) * sls(c, a))

Fragment of SL-graph of ¢
(some %-edges are missing)

9/15

Predicate Bounds

Goal
Bound sizes of predicate instances to of their encoding.
- Based on which capture in all models of ¢

Example formula

o £ sls(a, b) x * sls(d, a) A = (sls(a, ¢) * sls(c, a))

Fragment of SL-graph of ¢
(some %-edges are missing)

9/15

Predicate Bounds

Goal
Bound sizes of predicate instances to of their encoding.
- Based on which capture in all models of ¢

Example formula

0= b cx* * sls(d, a) A = (sls(a, ¢) * sls(c, a))

Fragment of SL-graph of ¢
(some %-edges are missing)

9/15

Predicate Bounds

Goal
Bound sizes of predicate instances to of their encoding.
- Based on which capture in all models of ¢

Example formula

¢ £sls(a,b) x b cx c— dxsls(d,a) A (sls(a, ¢) * sls(c, a))

- Improved location bound: 6

Fragment of SL-graph of ¢
(some %-edges are missing)

9/15

Predicate Bounds

Goal
Bound sizes of predicate instances to of their encoding.
- Based on which capture in all models of ¢

Example formula

¢ £sls(a,b) x b cx c— dxsls(d,a) A (sls(a, ¢) * sls(c, a))

[0,2]

- Improved location bound: 6 g e

- First phase: bounds on paths [O 2][1 1]

1 1]
which appear in SL-graph [

Fragment of SL-graph of ¢
(some %-edges are missing)

9/15

Predicate Bounds: Example

Example formula

@ £5sls(a,b) x b cxc— dxsls(d,a) A ~(sls(a, c) = sls(c, a))

Computation for sls(a, ¢) is based on two projections of SL-graph:

10/15

Predicate Bounds: Example

Example formula

¢ £sls(a,b) x b cx c— dxsls(d,a) A(sls(a. c) *sls(c, a))
Computation for sls(a, c) is based on two projections of SL-graph:

Upper bound:
- All directed edges

- Bound is given as length of the
shortest path from a to ¢

TN

10/15

Predicate Bounds: Example

Example formula

¢ £sls(a,b) x b cx c— dxsls(d,a) A(sls(a. c) *sls(c, a))
Computation for sls(a, c) is based on two projections of SL-graph:

Lower bound:
- Edges which surely do not contain [0,2]
end of path (c)
- Bound is given as length of the
longest path starting from a not
containing ¢

0 1

10/15

Predicate Bounds: Example

Example formula

¢ £5sls(a,b) x b cxc— d=sls(d,a) A ~(sls(a, c) = sls(c, a))

Computation for sls(a, ¢) is based on two projections of SL-graph:

Result:
- Bound [1,3] instead of default [0, 6]
- Bound is stable when LHS and RHS
grows

- Method is easily generalised for
DLLs and NLLs

10/15

Experimental Evaluation

Implementation

- New solver {
- Support for:

- Subset of the standard format based on SMT-LIB

- Multiple strategies of encoding (e.g,, direct x set encoding)
- Multiple SMT backends - 73, cvcb,
- Model generation

Thttps://github.com/TDacik/Astral

1/15

https://github.com/TDacik/Astral

Comparison on SL-COMP Benchmarks: SLLs

Symbolic heaps from the SL-COMP competition:

- Significantly simpler than full BSL, main goal is to compare with
other translation-based decision procedures (GRASSHOPPER, SLOTH)

12/15

Comparison on SL-COMP Benchmarks: SLLs

Symbolic heaps from the SL-COMP competition:

- Significantly simpler than full BSL, main goal is to compare with
other translation-based decision procedures (GRASSHOPPER, SLOTH)

Verification conditions (86)

Solver OK RO WIN <01s <1s Totaltime[s]
ASTRAL 86 0 - 84 86 4.62
GRASSHOPPER 86 0 70 52 86 8.65
S2S 86 0 5 86 86 2.08
SLOTH 64 3 86 0 28 235.28

OK - Correctly solved, RO - Out of time/memory, WIN — ASTRAL is faster

12/15

Comparison on SL-COMP Benchmarks: SLLs

Symbolic heaps from the SL-COMP competition:

- Significantly simpler than full BSL, main goal is to compare with
other translation-based decision procedures (GRASSHOPPER, SLOTH)

bolognesa+clones (210)

Solver OK RO WIN <0.1s <1s Totaltime [s]
ASTRAL 210 0 - 68 169 20291
GRASSHOPPER 203 7 148 60 87 1229.35
S2S 210 0 3 203 210 8.18
SLOTH 70 140 210 0 50 149.42

OK - Correctly solved, RO - Out of time/memory, WIN — ASTRAL is faster

12/15

Comparison on SL-COMP Benchmarks: NLLs

- NLL formulae selected from SL-COMP category of linear IDs
- S2S, SONGBIRD and HARRSH (three best solvers in the category)

Nested singly-linked lists (19)

Solver OK RO WIN <0.1s <1s Totaltime[s]
ASTRAL 19 0 = 3 9 86.93
HARRSH 14 5 18 0 0 183.01
S2S 19 0 0 19 19 0.43
SONGBIRD 11 5 8 4 11 1.38

OK - Correctly solved, RO — Out of time/memory, WIN — ASTRAL is faster

13/15

Comparison with cvc5

60.00 A

- Randomly generated
formulae of depth 8 with 8
variables

10.00 4

+ BSL formulae without 1.00 4

inductive predicates

Astral

- Astral run with cvc5
backend to provide better
comparison of translation

4
0.01 T T T T
method 0.01 0.10 1.00 10.00 60.00

0.10 4

14/15

- New translation-based decision procedure for a rich fragment of SL

- Outperforms existing translation-based decision procedures and
extends fragment which can be translated

Future work:

- User-defined inductive predicates
- Fine-grained combination with SMT (arbitrary location sorts)
- Interactive/lazy translation

15/15

Appendices

Comparison with GRASSHOPPER

60.00 A

10.00 4

- Entailments of positive
boolean combinations of

S 1.00
. 2
lists
- Formulae of depth 6 with 6 1o
variables
4
0.01 T T T T
0.01 0.10 1.00 10.00 60.00

GRASShopper

Intuition behind Reduction

- Such reduction is possible because considered fragment cannot
speak about arbitrary sizes of predicates

- For example, for DLLs, we may express the following:

Intuition behind Reduction

- Such reduction is possible because considered fragment cannot
speak about arbitrary sizes of predicates

- For example, for DLLs, we may express the following:

= dis(y,x,y)

Intuition behind Reduction

- Such reduction is possible because considered fragment cannot
speak about arbitrary sizes of predicates

- For example, for DLLs, we may express the following:

N i
X - dls(x,y,x",y') x x £y

DLL of size greater than 0

Intuition behind Reduction

- Such reduction is possible because considered fragment cannot
speak about arbitrary sizes of predicates

- For example, for DLLs, we may express the following:

dls(x, vy, X, V) xx £y x £ X
@=@0 -
DLL of size greater than 1

Intuition behind Reduction

- Such reduction is possible because considered fragment cannot
speak about arbitrary sizes of predicates

- For example, for DLLs, we may express the following:

0=8=0

dls(, y, X',y)k x £y x # X' A ﬁ(x» » (X)X (y.x))

DLL of size greater than 2

Intuition behind Reduction

- Such reduction is possible because considered fragment cannot
speak about arbitrary sizes of predicates

- For example, for DLLs, we may express the following:

0=8=0
}:
dls(, y, X',y)k x £y x # X' A ﬁ(w > (X, V) x X — (y.x))

DLL of size greater than 2

- DLLs of larger sizes cannot be expressed using BSL formulae without
using additional variables

Unique Footprints

- Semantics of x implicitly involves existential quantification:

There exists a split of heap such that ...

Unique Footprints

- Semantics of x implicitly involves existential quantification:

There exists a split of heap such that ...

- Unique footprints: quantification can be avoided when there is the
unique relevant split:

@Aﬁ(Xy * sls(x,y))

Can be satisfied Can be satisfied only
only on {x} on path from x to y
(which is unique)

Footprints: Generalisation

- Footprints are not unique in BSL because of disjunctions:

Wﬁ(emp\/XHy)
-~ 7

Can be satisfied
on @ or {x}

- However, we can still use the principle of footprints:

- For each operand of %, we compute sets of terms representing
over-approximation of its footprints
- Replace the “exists split” quantification underlying *
- by its instantiation to footprint terms
- provided they are small enough.

Bitvector Encoding

Direct Encoding:

- Datatypes (locations)
- Sets (heap domains)
- Arrays (heap mappings)

Bitvector Encoding

Direct Encoding:

- Datatypes (locations)
- Sets (heap domains) - non-standard theory
- Arrays (heap mappings)

Bitvector Encoding

Direct Encoding:

- Datatypes (locations) - standardised, not so commonly supported
- Sets (heap domains) - non-standard theory
- Arrays (heap mappings)

Bitvector Encoding

Direct Encoding:

- Datatypes (locations) — standardised, not so commonly supported
- Sets (heap domains) - non-standard theory
- Arrays (heap mappings)

Bitvector encoding

- Both locations and location sets are encoded as bitvectors
- Additional axioms: locations must fit into bitvector sets

- Better performance with quantifiers over (encoded) sets

Complexity

Theorem
Satisfiability problem for BSL is PSPACE-complete.

Proof idea:

- Problem is known to be PSPACE-complete for unbounded negations
by reduction from QBF

- BSL can express the true atom in QBF encoding

true[X] £ X>IE<X>< — nilvemp

When either guarded negation or disjunction is dropped, the problem is
NP-complete

	Small-Model Property
	Translation-Based Decision Procedure
	Experimental Evaluation
	Appendices
	Appendix

